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Abstract

These are the notes for my talk, Symplectic Geometry and Sheaves, presented at
the UC Irvine Geometry and Topology Seminar in November 2024. We survey how
methods from symplectic geometry refine our understanding of sheaf theory and provide
new constructions.

1 Motivation: Why symplectic geometry?

Let M be a smooth manifold. In classical mechanics, one often care about the momenta
in addition to the position, and the former transform like covectors, so one has to consider
the cotangent bundle T ∗M . The “law of physics” governing the trajectories of the particles
are often given by an energy function H ∈ C∞(T ∗M). For example, H can be the sum of
conservative energy and kinetic energy.

As the goal is to understand the trajectory, one has to turn the difference dH to a vector
field XH ∈ X(T ∗M), and integrate it. One object to provide such a correspondence is a
2-torsor, i.e., a section ω of Hom (T ∗(T ∗M), T (T ∗M)) = (T ∗(T ∗M))⊗2 , which is nondegen-
erate, and the correspondence is given by

Ω1 (T ∗M)
∼−→ X (T ∗M)

v 7→ ω(−, v).

To have a physically meaningful correspondence, this ω has to satisfy the conditions of

1. Energy conserving: The derivative of the energy function by the vector fieldXH(H) = 0
should be zero. But we have

XH(H) =: dH(XH) = ω(XH , XH)

so one can ensure this by assuming ω is alternating. That is, the 2-tensor is a 2-form.

2. Law preserving: Assume XH integrates to a flow φT . Then, φ
∗
t (ω) = ω is constant. By

differentiating t and Cartan’s formula, we see that

0 =
∂

∂t
φ∗
t (ω) = φ∗

tLXH
(ω) = φ∗

t (�����−d(dH) + (dω)(XH ,−)) .

Thus, this requirement can be implied by the assumption that dω = 0, i.e., ω is in fact
a closed 2-form.
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Definition 1.1. A symplectic manifold is a pair (X,ω) where ω ∈ Ω2(X) is a nondegenerate
closed 2-form.

But in addition to its physics origin, there are mathematical reasons why symplectic
geometry might be interesting even if the question is about smooth topology. The reason is
that the cotangent manifold T ∗M admits a canonical 2-form ωcan given by the derivative of
the Liouville 1-form αcan, defined by

(αcan)(x,ξ)(v) := ξ · (dπ(x,ξ)v).

A first observation is that any diffeomorphismM ∼= N lifts to a symplectomorphism T ∗M ∼=
T ∗N with respect to the canonical structure. In fact, any smooth isotopy lifts to a symplectic
isotopy. Now, consider the following conjecture by Arnold:

Conjecture 1.2 (Nearby Lagrangian conjecture). Let M be a smooth manifold. If L ⊆ T ∗M
is a closed exact Lagrangian submanifold, i.e., a half dimensional submanifold such that
αcan|L = df for some f ∈ C∞(L), then there exists a symplectic (in fact Hamiltonian)
isotopy φt moving L to the zero section φ1(L) = 0M ⊆ T ∗M .

Proposition 1.3. Assume the Nearby Lagrangian conjecture is true. Then, the cotangent
bundle T ∗M detects exotic differential structure on M . More precisely, if M and N are
smooth manifold such that there exists an exact symplectomorphism ψ : T ∗M

∼−→ T ∗N , then
M and n are diffeomorphic to each other.

Proof. Since 0M is a closed exact Lagrangian in T ∗M , ψ(0M) is a closed exact Lagrangian
in T ∗N . The conjecture implies that there exists a symplectic isotopy φt on T

∗N such that
φ1(ψ(0M)) = 0N . In other words, the composition φ1 ◦ψ :M ∼= N is a diffeomorphism from
M to N .

In the main talk, we will consider a similar paradigm: Questions on the base manifold
M can be answered by looking a lifting on T ∗M . The objects we study in this talk will,
however, be more algebraic.

2 Microlocal sheaf theory

For a topological space X, a sheaf F ∈ Sh(X), valued in abelian groups (Ab), is a functor
F : Opop

X → (Ab), meaning that there are assignments

U 7→ F (U)

(U ⊆ V ) 7→ (F (V )→ F (U)) ,

such that the global data are glued from local pieces. More precisely, if U admits an open
cover {Ui}i∈I , then the sequence

0→ F (U)→
∏
i

F (Ui)→
∏
i,j

F (Uij)
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should be exact. Here, the first arrow is simply the product of the restrictions map and the
second is the difference between two ways of restrictions (Ui ⊇ Uij ⊆ Uj, Uij := Ui ∩ Uj).
Indeed, exactness at F (U) means two sections s1, s2 in F (U) are the same if their restrictions
to Ui are the same for all i ∈ I. Similarly, exactness at

∏
F (Ui) means that a family of

sections si on Ui glues to a section s on U if they agree on double overlaps.

Remark 2.1. For technical reason, we will in fact consider sheaves valued in chain complexes
Ch(Z) (or a suitable stable coefficient), i.e., the target category should be an (∞, 1)-category
and one main difference is that the gluing

F (U)→ lim

(∏
i

F (Ui)→→
∏
i,j

F (Uij)
→→→
∏
i,j,k

F (Uijk)
→→→→ · · ·

)
in general does not terminate at any finite step.

Example 2.2. LetM be a manifold. A local system L onM is a representation of π1(M,x)
for some fixed point x. To get rid of the choice of x, one has to replace the group by the
fundamental groupoid π1(M). Roughly speaking, this is the category consists of points in
M and morphisms between two points x and y are given by paths between them. Thus, a
local system L is an assignment

(x ∈M) 7→ Lx

(γ : x ∼ y) 7→ Lx
∼= Ly.

In fact, such data combine to a bundle L → M with discrete fiber and sections of L form
a sheaf L which is locally constant, i.e., L(U) ∼−→ L(V ) if V ⊆ U are both contractible.
Furthermore, all locally constant sheaves are obtained this way so we will identify both
notions.

Example 2.3. If S is a triangulation of M , then any representation F ∈ Fun(Sop, (Ab))
gives a sheaf. Here, for two simplices Xα and Xβ, β ≤ α if Xα ⊆ Xβ. One example is when
M = R and take the triangulation (with open simplices)

S = {(−∞, 0), {0}, (0,∞)}.

According to the order, (−∞, 0) ≤ {0} so Fun(Sop, (Ab)) is the same as the representations
of the quiver

• ← • → •.

In this case, Z(0,∞) the constant sheaf supported by (0,∞) corresponds to the representation

0
∼←− 0→ Z, and similarly Z[0,∞) corresponds to 0← Z ∼−→ Z.
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Definition 2.4. For a stratification S = {Xα} of M , a sheaf F is constructible with respect
to S if

F |Xα ∈ Loc(Xα)∀α.

We use the notation ShS(M) to denote the category of sheaves constructible with respect to
S, and ShR−c(M) to denote real constructible sheaves, i.e., the union of ShS(M) such that S
consists of locally closed submanifolds (with certain regularity conditions),

Definition 2.5. The support of F is defined to be supp(F ) := {x|Fx ̸= 0}. Equivalently,
supp(F )c is the largest open set U such that F |U = 0.

Fact 2.6. If F,G ∈ Sh(M) such that supp(F ) ∩ supp(G) = ∅, then Hom(G,F ) = 0.

In order to get a more refined measurement, we have to lift it to the cotangent bundle,
using the microlocal sheaf theory developed by Kashiwara and Schapira [6].

Remark 2.7. The definitions given so far work both in the abelian and the derived setting.
However, beginning from the next definition, we have to assume the coefficient to be Ch(Z).

Approximate Definition 2.8. For a F ∈ Sh(M), its microsupport SS(F ) ⊆ T ∗M is a
conic closed subset such that SS(F ) ∩ 0M = supp(F ), and for (x, ξ) ∈ T ∗M \ 0M , we have
(x, ξ) ̸∈ SS(F ) if and only if

is an equivalence. Roughly speaking, since ξ divides a given open small open ball by half,
this says that ξ is not in the microsupport if any section of F propagates uniquely across
the barrier dictated by ξ,

Example 2.9. Both Z(0,∞) and Z[0,∞) from the earlier examples have the same support,
[0,∞), and are constant away from 0. Thus, it only remains to determine the microsupport
at 0. Now, for Z[0,∞), there is a section 1 ∈ Z living on (0,∞). Since the stalk at 0 is also Z
and the restriction is given by the identity, 1 propagates to the whole R. As a result, (0,−1) ∈
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T ∗R is not in the SS(Z[0,∞)). The same consideration shows that (0, 1) ∈ SS(Z[0,∞)) and
SS(Z[0,∞)) = T ∗

0,≥R1 ∪ [0,∞). Similarly, one can compute that SS(Z(0,∞)) = T ∗
0,≤R1 ∪ [0,∞).

Remark 2.10. In fact, we can show that for any open set U ⊆M such that ∂U is smooth,

SS(ZU) = N∗
out(U) and SS(ZU) = N∗

in(U).

With this notion, we can upgrade the previous Fact 2.6, which shows that questions
regarding the geometry on the base manifold M can be answered by invariants living on the
cotangent bundle T ∗M . An example of such kind is a generalization that, if L1 and L2 are
local systems such that L2 is of perfect stalks, then there is a canonical isomorphism

Hom(L2, L1) = L∨
2 ⊗ L1.

Fact 2.11. If SS∞(F ) ∩ SS∞(G) = ∅ and G is constructible with perfect stalks, then the
canonical morphism

Hom(G,ZM)⊗ F → Hom(G,F )

is an isomorphism.

Example 2.12. An example where the canonical morphism fails to be isomorphic is the
following: Consider M = R2 with coordinates (x, y), G = Z{x,y≥0}, and F = Z{0}. Then,

Hom(G,ZR2)⊗ F = Z{x,y>0} ⊗ Z{0} = 0

but
Hom(G,F ) = Γ{x,y≥0}

(
Γ{0}(Z)[2]

)
= Z{0}.

3 Symplectic geometry and sheaves

We’ve seen that thinking microlocally, i.e., thinking locally on the cotangent bundle provides
us refined information about sheaves. But to connect the two topics discussed, we recall that
T ∗M has a canonical symplectic structure given by dαcan. The source why microlocal sheaf
theory is intrinsically symplectic is because of the following theorem by Kashiwara and
Schapira:
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Theorem 3.1. Let F ∈ Sh(M) be a sheaf.

1. The set SS(F ) is coisotropic. If for simplicity we assume SS(F ) is stratified by lo-
cally closed submanifolds, this means that the smooth locus SS(F )sm is a coisotropic
submanifold.

2. Assume further that M is real analytic and SS(F ) is subanalytic. Then F is con-
structible if and only if SS(F ) is Lagrangian.

In fact, starting with Nadler and Zaslow’s work [10, 8] and Tamarkin’s [12], many results
connecting symplectic invariants with sheaf theoretic invariants have been obtained. We’ll
survey a few later but we begin by mentioning one source of inspiration, a somewhat phys-
ical consideration: 1 Take a Lagrangian L ⊆ T ∗M , with appropriate assumptions such as
eventually conic, one can deform it by

Lt := e−tL, t ∈ R.

Such a Lagrangian defines an algebra via Floer intersection theory. In a similar fashion of
Witten deformation [13], this algebra remains constant through out the deformation but,
at the limiting situation t → +∞, the Lagrangian L∞ becomes conic and its pseudo-
holomorphic disks collapse. However, the information is retained in the geometry of the
singularity of L0 remembered by a sheaf.

We now mention a few results regarding matching Floer and sheaf-theoretic invariants.

Theorem 3.2 ([3]). Let M be real analytic and Λ ⊆ S∗M be a subanalytic Legendrian. Then
there is an equivalence

W(T ∗M,Λ) = ShΛ(M)c

1One can find a more detailed discussion in the second arXiv version of [9].
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between (the idempotent completion of) the wrapped Fukaya category on T ∗M with stop
Λ, W(T ∗M,Λ), and the compact objects of the category of sheaves microsupported in Λ,
ShΛ(M) = {F | SS∞(F ) ⊆ S∗M}.

Theorem 3.3 ([4, Theorem E.1]). For a compactly supported Hamiltonian function φ on
T ∗M , there is an equivalence

HF∗(Γφ,∆T ∗M ; a, b) = H∗
M×M×[a,b) (Hom(Kφ,Z∆)) .

Here, HF∗ is the Lagrangian Floer homology and a, b means we only the piece of the filtration
whose action value is between a and b, and Kφ is certain canonical sheaf induced by φ.

The theorem of Guillermou and Viterbo has the following corollary theorem.

Theorem 3.4 ([7]). Let M be compact without boundary and U ⊆ T ∗M be an open subset
with a smooth contact boundary ∂U . For L > 0, there is an equivalence

SH∗
(−∞,L)(U) = HH∗(T (U), TL∗).

Here SH∗ is the symplectic cohomology, which knows about the non-squeezing properties of
U , HH∗ is the Hochschild homology, and T (U), the Tamarkin category on U , is a certain
enhancement of the category of sheaves.

The above are examples of how microlocal sheaf theory can be applied for the study of
symplectic geometry. But we end the notes with the other direction, i.e., how symplectic
geometry provides new constructions for sheaf theory. To begin with, we recall the theory of
D-modules: Let X be a complex manifold of dimension n, there is a ring-valued sheaf DX ,
the ring of differential operators, whose sections are locally of the form

P =
∑
α∈Nn

cα
∂α

∂xα
, cα ∈ C, cα = 0 for all but finitely manyα.

Here, we choice a local coordinate xi, and for each multi-index α ∈ Nn, we denote by

∂α

∂xα
= (

∂

∂x1
)α1 · · · ( ∂

∂xn
)αn

the linear operator given by composition of the standard ones. This ring admits a microlocal-
ization, a ring-valued sheaf EX on the coprojective bundle P∗X such that away from the zero
sections, ∂

∂xi
is formally inverted to ξi = ( ∂

∂xi
)−1. The celebrated Riemann-Hilbert correspon-

dence and its microlocalization, which many, including Kashiwara, Mebkhout, Andronikow,
Waschkies, etc., have contributed to, identify a certain class of modules over these rings with
constructible sheaf invariants which we’ve been discussing.

Theorem 3.5. Let X be a complex manifold. Then there are equivalences

RH : Perv(X) = DX -Modrh

and its microlocalization

µRH : µPerv(X) = EP ∗X -Modrh .

Here, Perv(X) is a certain abelian category inside Sh(X), ‘r’ standards for regular, and ‘h’
standards for holonomic.
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Given a complex contact manifold V , i.e., an odd dimensional complex manifold with a
maximally non-integrable hyperplane distribution H ⊆ TV . There is a Darboux’s theorem
in this setting that locally V is contactomorphic some open subsets of P∗X. Kashiwara [5]
shows that the sheaf EP ∗X on Darboux charts glues to a canonical global object EV .

The goal is then to ask whether µPerv glues as well and if µRH matches the gluing by
both sides. To answer this question, one has to the two questions:

(1) Given a contactomorphism χ : U ∼= V , between open subsets of some coprojective
bundles P∗X and P∗Y , can µPerv be identified?

(2) Given a family of Darboux charts {Ui} how can the identification in (1) be made
consistent?

It is already known in [6] that locally if U and V are both contractible, then a canonical
identification exists. However, compatibility of the gluing data remains unsolved. Indeed,
unlike the situation of E , gluing category-valued sheaves a priori requires more data. The
question is amazingly resolved by h-principle in contact geometry by Vivek Shende in [11]
and later in his joint work with David Nadler [9]. To paraphrase it, the existence question in
(1) and (2) are both governed by a homotopical obstruction. With this general machinery,
we can show that both µPerv and µRH glue.

Theorem 3.6 ([1, 2]). Let V be a complex contact manifold.

1. There exists a canonical abelian-category-valued sheaf µPervV on V , locally isomorphic
to µPervP∗X on Darboux charts.

2. There is an equivalence

µRHV : µPervV (V ) = EV -Modrh .
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