Wrapped sheaves expository

Christopher Kuo

September 10, 2022

Abstract

This is the notes for the talk given in the topology seminar in University of Southern California in Fall 2022. The goal of this talk is to give a rough picture of [3] for general audience. Thus, we will focus mostly on examples and give only definitions and facts which are indispensable.

1 Introduction

The project for this talk is a continuation of a previous research by Ganatra, Pardon, and Shende in [1]. Let M be a real analytic manifold and Λ a closed subanalytic (singular) isotropic, i.e., a union of isotropic submanifolds in S^*M . The result we care from that paper is an equivalence of categories

$$\mathcal{W}(T^*M,\Lambda) \cong \operatorname{Sh}_{\Lambda}(M)^c$$
.

We will give more information about these categories later. For the moment, we just mention that $\mathcal{W}(T^*M,\Lambda)$ is a defined through Floer theory while $\operatorname{Sh}_{\Lambda}(M)^c$ can be understood combinatorially.

One fact to know is that this equivalence is not proven by defining a functor and then proving that it is indeed an equivalence. Instead, the authors of [1] find a class of generators on both sides and show that these generators match functorially an hence prove the equivalence. Now, there is an equivalence established earlier in [5, 4] between the infinitesimal Fukaya category of T^*M and the category of constructible sheaves on M. It is expected that all the categories mentioned above can be fit into the following diagram:

$$\operatorname{Fuk}_{\epsilon}(T^{*}M)^{op} \supseteq \operatorname{Fuk}_{\epsilon}(T^{*}M,\Lambda)^{op} - \cdots - \frac{l_{\operatorname{Fuk}}}{l_{\operatorname{Sh}}} - \cdots \to \mathcal{W}(T^{*}M,\Lambda)^{op}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

That is, it is expected the categories considered by Ganatra, Pardon, and Shende can be obtained by localizations from those considered by Nadler and Zaslow. What is done in [3]

is to define the localized category $\mathfrak{w}\mathrm{sh}_{\Lambda}(M)$ and a comparison functor \mathfrak{W}_{Λ}^+ , which exhibits that it's the same as the more classical category $\mathrm{Sh}_{\Lambda}(M)^c$

The plan for this talk is to provide descriptions of what those categories are, in the order of $\mathcal{W}(T^*M,\Lambda)$, $\operatorname{Sh}_{\Lambda}(M)^c$, and finally $\operatorname{\mathfrak{w}sh}_{\Lambda}(M)$, as well as the functor \mathfrak{W}_{Λ}^+ . The last two construction depends heavily from the sheaf quantization construction by Guillermou, Kashiwara, and Schapira in [2]. To make the talk simple, we use \mathbb{Z} as our coefficient.

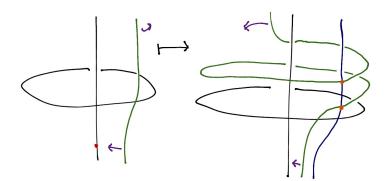
2 Wrapped Fukaya categories

Without going into too much details, we mention that the wrapped Fukaya category $\mathcal{W}(T^*M, \Lambda)$ is an A_{∞} -category, which means in addition to composition there are higher morphisms encoding the associativity of composition, and all such operation comes from pseudo-holomorphic disk counting.

We will only look at its homotopy category, i.e., we look at its morphisms after passing to cohomology. Now the basic objects of $\mathcal{W}(T^*M,\Lambda)$ are given Lagrangians with structures as usual. To have a well-functioning Floer theory, a Lagrangian L should be compact horizontally and conic, i.e., invariant with respect to the scaling of T^*M , at ∞ . This way, we can talk about the corresponding Legendrian $\partial_{\infty}L$ in S^*M and we require it to be away from Λ .

For such Lagrangians L, K, we denote the morphisms between them by $\mathcal{W}(L, K)$. Then $H^*\mathcal{W}(L, K) \cong HW^*(L, K) := \operatorname*{colim}_{K \to K^w} HF^*(L, K^w)$. Here, HF^* is the ordinary Floer cohomology define as chain complexes generated by Lagrangian intersections with differential given by disk counting. The focus today is the (positive) wrapping $K \to K^w$, which means a isotopy K_t between K and K^w such that K_t are all conic near infinity, $\partial_\infty K_t$ is an isotopy of Legendrians, and $\alpha(\partial_t \partial_\infty K_t) \geq 0$.

We illustrate it with an example: Consider $M = S^1$, $\Lambda = S_{0,\leq}^* S^1$, the negative part of the fiber at the origin, and we would like to understand the Lagrangian $L = T_{\epsilon}^* S^1$ for some small ϵ . We draw in the following picture how a wrapping in this situation look like:



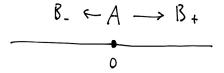
One can see that for each wrapping, the generator are given by the number of times where L goes around the circle once and hit itself. It is an exercise that no disk with correct index goes between them so $HW^*(L,L) = \underset{n\to\infty}{\operatorname{colim}} \mathbb{Z}^{\oplus n} = \mathbb{Z}^{\mathbb{Z}_{\geq 0}}$. We mention that a better way

to express it is $HW^*(L, L) = \mathbb{Z}[t]$, the polynomial rings, and if we change Λ to the whole fiber $S_0^*S^1$ or no fiber, then the same Lagrangians gives \mathbb{Z} or $\mathbb{Z}[t, t^{-1}]$.

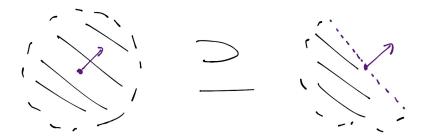
3 Sheaves with a fixed microsupport condition

We turn our attention to $\operatorname{Sh}_{\Lambda}(M)$. We first recall that a sheaf $F \in \operatorname{Sh}(M)$ consists of assignments $U \mapsto F(U)$, $(V \subseteq U) \mapsto F(U) \to F(V)$, and more, plus a gluing condition. For each sheaf F, there exists a conic, closed, coisotropic set $\operatorname{SS}(F)$ in T^*M , called the microsupport. On the zero section it recovers the support $\operatorname{supp}(F) = \{x | F_x \neq 0\}$ and away from the zero section this set roughly encodes the codirections where the restriction is not an isomorphism. In general, it is hard to compute $\operatorname{SS}(F)$ but when F is constructible, meaning that there is a stratification \mathcal{S} such that $F|_{X_{\alpha}} \in \operatorname{Loc}(X_{\alpha})$ for each strata X_{α} in \mathcal{S} , $\operatorname{SS}(F)$ is easier to compute and is always a singular Lagrangian if we know that $\operatorname{SS}(F)$ is subanalytic.

Consider the one dimensional case below and call it F:



Away from 0, the sheaf is just constant so there is no microsupport. To answer whether (0,-1) is in the SS(F), we consider the restriction $F((-1,1)) \to F((0,1))$, or whether the map $A \to B_+$ is an isomorphism, and similar for (0,1). In general, for a given covector, we roughly consider the following picture:



The symbol $\operatorname{Sh}_{\Lambda}(M)$ then stands for the subcategory of $\operatorname{Sh}(M)$ whose objects F satisfies $\operatorname{SS}^{\infty}(F) \subseteq \Lambda$. One property of subanalytic Legendrians Λ in S^*M is that there is always a (Whitney) triangulation S so that $\Lambda \subseteq S^*S := \bigcup_{\alpha \in S} N_{\infty}^* X_{\alpha}$ so $\operatorname{Sh}_{\Lambda}(M)$ can be seen as a subcategory of S-Mod where some arrows are required to be isomorphisms.

Consider again the example $M = S^1$, $\Lambda = S_{0,\leq}^* S^1$. We provide directly the answer that the sheaf F corresponds to $L = T_{\epsilon}^* S^1$ is given by the constructible sheaves F whose stalks are given by $\mathbb{Z}^{\mathbb{Z}_{\geq 0}}$, and near 0 where the picture has the from $B_{\leftarrow} A \to B_+$, is given by

$$\mathbb{Z}^{\mathbb{Z}_{\geq 0}} = \mathbb{Z}^{\mathbb{Z}_{\geq 0}} \xrightarrow{m} \mathbb{Z}^{\mathbb{Z}_{\geq 0}}$$

where m is the shifting $m(a_0, a_1, a_2, \cdots) = (0, a_0, a_1, \cdots)$. This sheaf has an alternative expression by $F = \pi_! \mathbb{Z}_{(0,\infty)}$, where $\pi : \mathbb{R}^1 \to S^1$ is the universal cover, so a computation of the self-Hom can look like

$$\begin{aligned} \operatorname{Hom}(\pi_{!}\mathbb{Z}_{(0,\infty)},\pi_{!}\mathbb{Z}_{(0,\infty)}) &= \operatorname{Hom}(\mathbb{Z}_{(0,\infty)},\pi^{!}\pi_{!}\mathbb{Z}_{(0,\infty)}) \\ &= \operatorname{Hom}(\mathbb{Z}_{(0,\infty)},\pi^{*}\pi_{!}\mathbb{Z}_{(0,\infty)}) \\ &= \Gamma((0,\infty),\pi^{*}\pi_{!}\mathbb{Z}_{(0,\infty)}) \\ &= \left(\pi^{*}\pi_{!}\mathbb{Z}_{(0,\infty)}\right)_{\epsilon} \\ &= \Gamma_{c}(\{\epsilon + n | n \in \mathbb{Z}_{\geq 0}\};\mathbb{Z}) = \mathbb{Z}^{\mathbb{Z}_{\geq 0}}. \end{aligned}$$

4 Wrapped sheaves

Let X, Y be topological spaces. A sheaf $K \in Sh(X \times Y)$ produces a functor

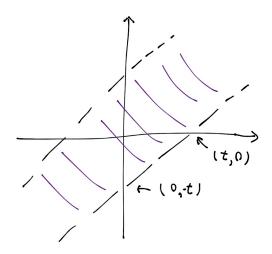
$$\operatorname{Sh}(X) \to \operatorname{Sh}(Y)$$

 $F \mapsto K \circ F := p_{21}(K \otimes p_1^* F)$

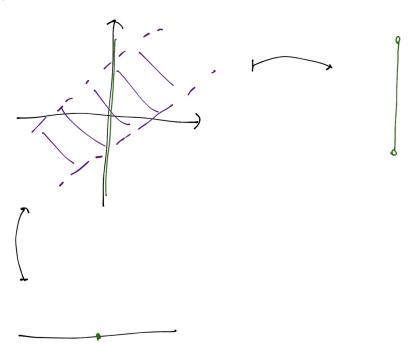
which is usually referred as convolution with the sheaf kernel K.

Now let $\varphi: S^*M \times I \to S^*M$ be a contact isotopy where I is an open interval containing 0. A theorem of Guillermou, Kashiwara, and Schapira is that there exists a unique sheaf $K = K(\varphi) \in \operatorname{Sh}(M \times M \times I)$ such that $K|_0 = \mathbb{Z}_\Delta$ and $\operatorname{SS}^\infty(K)$ is contained in the movie of φ . By convolution, we get, for a fixed sheaf $F \in \operatorname{Sh}(M)$, a family $\{F_t\}_{t \in I}$ such that $F_0 = F$ and $\operatorname{SS}^\infty(F_t) = \varphi_t \operatorname{SS}^\infty(F)$, and we can think it as isotope F by φ . Furthermore, when φ is positive, then there is a continuation map $K_s \to K_t$ when $t \geq s$.

As a example, consider the isotopy on $S^*\mathbb{R}^1 \cong \mathbb{R}^1 \times \pm 1$ which is given by the formula $\varphi(x,\pm 1) = (x\pm t,\pm 1)$. Its GKS sheaf quantization has $\mathbb{Z}_{\{(x,y)||x-y|< t\}}[1]$ as the slice at t>0:



It sends $F = \mathbb{Z}_{\{0\}}$, by convolution, to $\mathbb{Z}_{(-t,t)}[1]$:



Now, we define the category of wrapped sheaves. First, take $\mathfrak{w}\operatorname{sh}_{\Lambda}(M)$ to be the collection of sheaves F such that $\operatorname{SS}^{\infty}(F)$ is a subanalytic Legendrian away from Λ , $\operatorname{supp}(F)$ is compact, and F_x to be perfect for all $x \in M$.

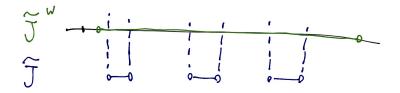
Definition 4.1. The category of wrapped sheaves $\mathfrak{w}\operatorname{sh}_{\Lambda}(M)$ is defined to be

$$\mathfrak{w}\mathrm{sh}_{\Lambda}(M) := \widetilde{\mathfrak{w}}\mathrm{sh}_{\Lambda}(M)/\mathrm{isotopies}.$$

Similarly to the wrapped Fukaya category, morphisms in $\mathfrak{w}\operatorname{sh}_{\Lambda}(M)$ is computed by the colimit

$$\operatorname{Hom}_w(G, F) = \underset{F \to F^w}{\operatorname{colim}} \operatorname{Hom}(G, F^w).$$

As one can guess, we consider yet again the case $M = S^1$ and $\Lambda = S_{0,\leq}^* S^1$. It's now not hard to convince oneself that the object corresponds to $L = T_{\epsilon}^* S^1$ is $\mathbb{Z}_{\{0\}}$. So by the picture above, we consider $\operatorname{Hom}_w(\mathbb{Z}_J, \mathbb{Z}_J) = \operatorname{colim}_w \operatorname{Hom}(\mathbb{Z}_J, (\mathbb{Z}_J)^w)$ where $J \hookrightarrow S^1$ is some small open interval. Depending on how large the wrapping w is, the situation in the universal cover is given by the following picture:



So $\operatorname{Hom}(\mathbb{Z}_J,(\mathbb{Z}_J)^w)=\mathbb{Z}^{\oplus n}$ where n is the number of times when the lift of J passes over itself after extended by w. Thus, we conclude again that $\operatorname{Hom}_w(\mathbb{Z}_{\{0\}},\mathbb{Z}_{\{0\}})=\mathbb{Z}^{\mathbb{Z}_{\geq 0}}$.

Finally, we mention that the comparison map is given by

$$\mathfrak{W}_{\Lambda}^{+}: \mathfrak{w}\mathrm{sh}_{\Lambda}(M) \to \mathrm{Sh}_{\Lambda}(M)$$

$$F \mapsto \operatorname*{colim}_{F \to F^{w}} F^{w},$$

That is, we take the colimit directly on the objects. One can conclude, from the last picture that, in the case $M = S^1$ and $\Lambda = S^*_{0,\leq} S^1$, $\mathfrak{W}^+_{\Lambda} \mathbb{Z}_{\{0\}} = \pi_! \mathbb{Z}_{(0,\infty)}$, which is the reason for our guess earlier.

References

- [1] Sheel Ganatra, John Pardon, and Vivek Shende. Microlocal Morse theory of wrapped Fukaya categories. arXiv:1809.08807v2, 2020.
- [2] Stéphane Guillermou, Masaki Kashiwara, and Pierre Schapira. Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems. *Duke Math. J.*, 161(2):201–245, 2012.
- [3] Christopher Kuo. Wrapped sheaves. arXiv:2102.06791, 2021.
- [4] David Nadler. Microlocal branes are constructible sheaves. arXiv:math/0612399v4, 2009.
- [5] David Nadler and Eric Zaslow. Constructible sheaves and the Fukaya category. *J. Amer. Math. Soc.*, 22(1):233–286, 2009.