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Abstract

Symplectic geometric methods in microlocal sheaf theory

by

Christopher Lp Kuo

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Vivek Shende, Chair

The main goal of this dissertation is to import symplectic geometric methods into
microlocal sheaf theory based on the foundational sheaf quantization construction
by Guillermou, Kashiwara, and Schapira. This construction provides the notion of
isotopies of sheaves and a sheaf-theoretic analogue of the notion of continuation maps
in Lagrangian Floer theory.

Based on previous work by Ganatra, Pardon, and Shende, we make further ex-
amination on the category of unbounded sheaves microsupported in some singular
isotropic Λ in the cosphere bundle. We show that various categorical constructions
concerning this category can be described in symplectic geometric terms by using
isotopies of sheaves.

The main construction is a sheaf-theoretic analogue of the wrapped Fukaya cat-
egory, by localizing a category of sheaves microsupported away from some given
Λ along continuation maps. When Λ is a subanalytic singular isotropic, we also
construct a comparison map to the category of compact objects in the category
mentioned above, and show that it is an equivalence. The last statement can be
seen as a sheaf-theoretical incarnation of the sheaf-Fukaya comparison theorem of
Ganatra-Pardon-Shende.
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Chapter 1

Introduction

The microlocal sheaf theory of Kashiwara and Schapira [32] relates sheaves – which are topo-
logical structures – on manifolds with the symplectic geometry of their cotangent bundles.
The basic construction is the microsupport: to a sheaf F on a C1 manifold M , one associates a
closed conic subset SS(F ) in the cotangent bundle T ∗M . The intersection of this set with the
zero section recovers the support supp(F ); the projectivization SS∞(F ) := (SS(F )\0M)/R>0

indicates the codirections along which the sheaf changes. A key indicator of the symplectic
nature of the theory is the involutivity theorem [32, Thm. 6.5.4], which asserts that SS(F )
is always a singular coisotropic subset with respect to the canonical symplectic structure of
T ∗M . Under an appropriate tameness assumption, SS(F ) is a singular Lagrangian if and
only if F is constructible, i.e., there exists a stratification {Xs} of M such that F |Xs is a
local system for all Xs.

Deeper relationships between microlocal sheaf theory and symplectic geometry began to
emerge in the mid 2000s. Nadler and Zaslow related constructible sheaves to ‘infinitesimally
wrapped’ Floer theory [44, 40]. Meanwhile, Tamarkin introduced purely sheaf-theoretical
methods into symplectic topology in his study of non-displaceability, a problem previously
studied largely by Floer theoretic methods [53]. The subsequent Guillermou-Kashiwara-
Schapira sheaf quantization of contact isotopies [26] — i.e. the highly nonobvious statement
that contact isotopies of S∗M act on sheaves on M — led to a host of further incursions by
sheaf theorists into symplectic topology [23, 24, 25, 50, 49, 10, 11, 48, 55, 8, 9, 29, 4, 5, 6,
34, 35] and vice versa [56, 57, 46].

Meanwhile on the Floer theoretic side, Abouzaid and Seidel formulated a way to in-
corporate contact dynamics into Fukaya categories for noncompact symplectic manifolds
[2]. Their construction is roughly to localize a partially-defined infinitesimally wrapped
Fukaya category along ‘continuation morphisms’ associated to positive isotopies. The re-
sulting notion of wrapped Fukaya category (and its later ‘partially wrapped’ generalizations
[51, 20, 19]) provides the correct mirrors to coherent sheaf categories on certain singular
spaces. While such wrapped categories are nontrivial to compute directly (the simplest case
was [1]), Nadler conjectured that they matched categories of compact objects inside cate-
gories of unbounded sheaves with prescribed microsupport [41]. This conjecture was later
established by the work of Ganatra, Pardon, and Shende [21]; as a result, sheaf-theoretic
methods (e.g. [41, 42, 14, 33, 18, 17]) can be used to establish homological mirror symmetry
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in these settings.
While Nadler termed his category the ‘wrapped sheaves’, the name did not entirely

reflect its construction: there is no wrapping in their definition. In this paper we study the
category which this name manifestly suits — the localization of the category of sheaves along
the continuation morphisms of [26] — and give an entirely sheaf-theoretic proof that it is
equivalent to Nadler’s category.

Remark 1.0.1. Let us compare and contrast this article with the work [21]. In that article,
the authors construct an equivalence between the partially wrapped Fukaya category of a
cotangent bundle, stopped along some subanalytic isotropic Λ, with the category of compact
objects in the category of unbounded sheaves microsupported in Λ:

PerfW(T ∗M,Λ)op ∼= ShΛ(M)c

Their approach was to introduce an abstract axiomatic characterization (‘microlocal Morse
theatre’) and verify that both sides satisfy it.

Here is another approach which is illustrated in the following diagram:

Fukε(T
∗M)op ⊇ Fukε(T

∗M,Λ)op W(T ∗M,Λ)op

Shconstr(M) ⊇ Shconstr,S∗M\Λ(M) wshΛ(M) ShΛ(M)c

[44, 40] [44, 40] [21]

W+
ΛlSh

lFuk

Assume given an equivalence of infinitesimally wrapped categories such as asserted in
[44, 40], localize both sides along the continuation morphisms, and then show purely on the
sheaf-theoretic side that the resulting localized category of sheaves is in fact equivalent to
ShΛ(M)c. See Figure 3.2 for an illustration. The present article establishes the last step,
indicated by W+

Λ , in this argument. While this route of proof would be logically independent
of [20, 19, 21], the proof of the main theorem of the present article follows a strategy adapted
from [21].

Note however that, in the literature, the category W(T ∗M,Λ) is not constructed as a
localization of an infinitesimally wrapped category. In fact, constructions of W(T ∗M,Λ) as
in [2, 51, 20], always avoid infinitesimal wrappings. For example, the authors in [20] begin
with the sub-semi-category Fukpre(T ∗M,Λ) with morphisms defined only between transversal
Lagrangians, and roughly speaking localize along continuation maps so they only ever have
to work with large wrappings.

We turn to a more precise discussion of our results. Classically, Kashiwara and Schapira
study the totality of sheaves on manifolds Sh(M) and use the notion of microsupport to
measure various properties regarding sheaves and morphisms between them [32]. Based on
the modern higher categorical setting, recent study [21, 43] suggests that the subcategory
ShΛ(M) of sheaves with some fixed singular isotropic microsupport condition Λ is also an
important invariant and enjoys many decent properties. For example, it is shown in [21]
that such categories are compactly generated and there is a procedure to find its compact
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Figure 1.1: An alternative to [21], illustrated for M = R1. The purple arrow indicates the
positive Reeb direction and the red dots are the stop Λ. The green objects, from left to
right, are a smooth curve conic at infinity in T ∗R1, the microsupport of a constant sheaf on
an open interval, and the microsupport of the same sheaf after being pushed to the stop.

objects. Following this line of research, we show that categories of the form ShΛ(M) enjoy
some compatibility property with the standard symmetric monoidal structure ⊗ of PrL

st, the
category of presentable categories with morphisms being left adjoints.

Proposition 1.0.2. Let M , N be real analytic manifolds and Λ ⊆ S∗M , Σ ⊆ S∗N be
subanalytic singular isotropics. Denote by Λ×Σ the product singular isotropic in S∗(M×N),
then there is a equivalence

ShΛ(M)⊗ ShΣ(N) = ShΛ×Σ(M ×N)

(F,G) 7→ F �G.

See Proposition 3.4 for details. Based on this statement, we give a geometric description
for the categorical dual ShΛ(M)∨ with respect to (PrL

st,⊗) as the category Sh−Λ(M) with
reversed microsupport. A consequence of this identification is a classification of all colimiting-
preserving functors between categories of the form ShΛ(M):

Theorem 1.0.3. Let M and N be real analytic manifolds and Λ ⊆ S∗M , Σ ⊆ S∗N be
closed subanalytic singular isotropics. Then, the identification ShΛ(M)∨ = Sh−Λ(M) induces
an equivalence

Sh−Λ×Σ(M ×N) = FunL(ShΛ(M), ShΣ(N))

which is given by K 7→ (H 7→ K ◦H) for H ∈ ShΣ(N).

See Section 3.6 for details.
Now we bring in symplectic geometry and discuss the continuation maps in the sheaf-

theoretical setting. Recall that for a closed conic subset X ⊆ T ∗M , the inclusion ι∗ :
ShX(M) ↪→ Sh(M) of sheaves microsupported in X to all sheaves has a left adjoint ι∗ and
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right adjoint ι!. Now consider F ∈ Sh(M × R) as a one-parameter family of sheaves on M
and set Fa := F |M×{a}. An explicit description of ι∗ given in [26, Proposition 4.8] shows
when F satisfies the condition SS(F ) ⊆ T ∗M × T ∗≤R, there is a continuation map Fa → Fb
for a ≤ b. (See [53, 2.2.2] and [27, (77)] for the dual construction.) Now pick a contact form
α on S∗M coorienting the contact structure induced from the symplectic structure on T ∗M .
We say a C∞ map Φ : S∗M × R → S∗M is an isotopy if the induced map φt := Φ(−, t) is
a contactomorphism for all t ∈ R and φ0 = idS∗M . If Φ is a positive isotopy (α(∂tφt) ≥ 0)
then the corresponding GKS sheaf kernel K(Φ) and hence its convolution K(Φ) ◦ F with
F ∈ Sh(M) will satisfy this condition and hence admit continuation maps.

Now fixed an open set Ω ⊆ S∗M . Homotopy classes of compactly supported isotopies
with fixed ends can be organized to an ∞-category W (Ω) whose morphisms are given by
concatenating with positive isotopies. We refer this category as the category of positive
wrappings. The discussion on continuation maps will imply that there is a wrapping kernel
functor w : W (Ω) → Sh(M × M) which sends isotopies to the end point of the GKS
sheaf kernels and positive isotopies to continuation maps. One can use this functor to the
define the infinite wrapping functors W±(Ω) : Sh(M) → ShS∗M\Ω(M) by sending F to
the colimit colimΦ (w(Φ) ◦ F ) or limit limΦ (w(Φ) ◦ F ) over Φ ∈ W (Ω). Geometrically, we
push F with increasingly positive (resp. negative) isotopies and take colimit (resp. limit)
over them. These functors give a geometric description for the adjoints of the inclusion
ι∗ : ShS∗M\Ω(M) ↪→ Sh(M).

Theorem 1.0.4. Let ι∗ : ShS∗M\Ω(M) ↪→ Sh(M) denote the tautological inclusion. Then
the functor W+(Ω) (resp. W−(Ω)) is the left (resp. right) adjoint of ι∗.

See subsection 4.2 for the proof.
One main application of the notion of isotopies of sheaves is the study of Verdier duality.

Assume the manifold M is compact so all object F ∈ ShΛ(M) with perfect stalks are
compact. Denote by ShΛ(M)b the collection of all such sheaves so there is an inclusion
ShΛ(M)b ⊆ ShΛ(M)c. One question is whether the Verdier duality

ShΛ(M)b,op = ShΛ(M)b

F 7→ DM(F ) := Hom(F, ω)

extends to ShΛ(M)c. We note such an extension would produce and can be recovered from
an equivalence ShΛ(M)∨ = Sh−Λ(M), which is in general different from the one consider
for Theorem 1.0.3. We show, in Theorem 5.1.2, using the technique a perturbation trick
developed in Proposition 4.2.8 that the existence of such an extension is equivalent to the
invertibility of the endofunctor

S+
Λ : ShΛ(M)→ ShΛ(M)

F 7→W+
Λ(Fw)

where Fw is a pushoff by a small Reeb flow displacing F from Λ. We also verify, in Theorem
5.2.4, that this conditions holds for a large class of singular isotropic, and show, in Proposition
5.3.2, that the functor S+

Λ has intrinsic categorical meaning and is in particular independent
of the choice of the small Reeb flow.
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The main construction of this paper is the category of wrapped sheaves wshΛ(M) where M
is a real analytic manifold and Λ is a closed subset in S∗M . It is a stable category defined by
first collecting sheaves which have subanalytic singular isotropic microsupport away from Λ
and those which are compactly isotopic to them in S∗M \Λ, and then inverting continuation
maps which come from positive isotopies satisfying similar conditions. One effect of this
localization is that objects which can be connected through an isotopy on S∗M \ Λ will be
identified. We show that Hom’s in wshΛ(M) can be computed as colimits of Hom’s between
ordinary sheaves over W (S∗M \ Λ). Finally, when Λ is a subanalytic singular isotropic, by
using the infinite wrapping functor W+(S∗M \Λ), we define a canonical comparison functor
W+

Λ(M) : wshΛ(M) → ShΛ(M)c. The main theorem of this paper is that W+
Λ(M) is an

equivalence.

Theorem 1.0.5. Let Λ ⊆ S∗M be a subanalytic singular isotropic. The comparison functor
W+

Λ(M) : wshΛ(M)→ ShΛ(M)c is an equivalence.

See subsection 7.3 for the proof.

Remark 1.0.6. Note that, unlike the analogous isomorphism in [21], our isomorphism is
induced by an explicit functor.

Since all the above constructions are functorial on the inclusion of open sets of M , we
obtain a precosheaf wshΛ and we refer its objects as the wrapped sheaves. The corollary of
the above theorem is that this precosheaf is a cosheaf.

Corollary 1.0.7. Let Λ ⊆ S∗M be a subanalytic singular isotropic. The comparison mor-
phism W+

Λ : wshΛ → ShcΛ between precosheaves is an isomorphism. In particular, the pre-
cosheaf wshΛ is a cosheaf.

The proof of Theorem 1.0.5 follows the same strategy as [21]. In short, subanalytic
geometry implies that, for a subanalytic singular isotropic Λ, there exists a C1 Whitney
triangulation S such that Λ is contained in N∗∞S := ∪s∈SN∗∞Xs. For this special case,
the two categories are natural identified as Perf S, the category of perfect S-modules, and
hence admit a preferred set of generators which are matched under W+

N∗∞S(M). We then

apply the nearby cycle technology developed in [43] to conclude that W+
N∗∞S(M) induces an

equivalence on the Hom’s for these generators and hence finished the proof for this case. To
conclude the theorem for the general case, we note that the construction on both sides are
contravariant on Λ. Thus we study the fiber of the canonical maps wshN∗∞S(M)→ wshΛ(M)
and ShN∗∞S(M)c → ShΛ(M)c, and show that they are generated by a sheaf-theoretical version
of the linking disks and microstalks at the smooth points of N∗∞S \Λ. Finally, we show that
W+

Λ(M) matches those objects and thus conclude the general case.

Convention

We follows the higher categorical convention developed in [36, 37]. For example, a category
unless emphasized means an∞-category and limits and colimits are taken in this sense. We
also switch between the contact and homogeneous symplectic notations. For example, we
will use the same notation to denote a contact isotopy ϕt on ⊆ S∗M and its on Ṫ ∗M when
the context is clear.
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Chapter 2

Preliminary

The goal of this chapter is to recall various notions and facts which we will be using later.
None of the contents here is original and we only collect them for the convenience of the
readers. Readers who are familiar with basic symplectic geometry and higher categorical
theory can safely skip this section.

2.1 Homogenous symplectic geometry and contact ge-

ometry

We recall some facts from homogenous symplectic geometry and contact geometry, and
explain how they are interchangeable with each other. We assume that the contact manifolds
in this sections are co-orientable. Let (X, dα) be a Liouville manifold and let Z denote
its Liouville vector field. We define a homogeneous symplectic manifold to be a Liouville
manifold such that the Liouville flow induces a proper and free R>0-action. In this case, the
quotient X/R>0 is a manifold.

Definition 2.1.1. A subset Y ⊆ (X, dα) is conic if it is preserved under the R>0-action.

Proposition 2.1.2. A coisotropic submanifold Y is conic if and only if α|TY dα = 0 where
we use TY dα to denote the symplectic orthogonal complement of TY .

Proof. Y is coisotropic iff TY dα ⊆ TY . Y is conic if and only if Z(y) ∈ TyY for y ∈ Y
which implies αy(w) = dαy(Z(y), w) = 0 for all w ∈ TY dα. Note this direction always holds.
On the other hand, the same equation implies that Z(y) ∈ TY if α|TY dα = 0. Since Y is
coisotropic, Z(y) is in particular in TyY .

Corollary 2.1.3. A Lagrangian submanifold L ⊆ (X, dα) is conic if and only if α|L = 0.

Example 2.1.4. The Liouville vector field Z of the cotangent bundle T ∗M can be written
locally by Z =

∑
ξi∂ξi where the ξi’s are the dual coordinates of local coordinates xi of

M . The Liouville flow is given by ΦZ
s (x, ξ) = (x, esξ) and the R>0-action is simply the

multiplication, r · (x, ξ) = (x, rξ) for r ∈ R>0.

Proposition 2.1.5. The one form α descends to a contact form α on X/R>0.

6



Proof. Let X denote the Liouville vector field associated to α (which is non-vanishing since
R>0 acts freely). By definition, α(Z) = ω(Z,Z) = 0 so it defines a section on (TX/〈Z〉)∗ =
T ∗(X/R>0). This is a contact form since on X, ιZω ∧ d(ιZω)n−1 = ιZω ∧ (LZω)n−1 =
ιZω ∧ ωn−1 = 1

n
ιZω

n−1 and T (X/R>0) can be identified as vectors transversal to Z.

Example 2.1.6. The example we will study in this paper is the cotangent bundle away
from the zero section Ṫ ∗M for some smooth manifold M . Pick a metric g and restrict
the projection p : Ṫ ∗M → S∗M to {(x, ξ)|gx(ξ, ξ) = 1} and denote it as pg. The map pg
is a diffeomorphism because its domain is transversal to the R>0-action and pg is clearly
one-to-one. Its inverse s : S∗M → Ṫ ∗M provides S∗M a global contact form s∗αcan.

Note any such section gives the same contact structure but there might not be any
contactomorphism sending one contact form to another. A more intrinsic description of the
contact structure is η[x,ξ] = ker ξ.

Lemma 2.1.7. A homogeneous symplectomorphism ψ : (X, dα) → (Q, dβ) preserves the
Liouville form, i.e., ψ∗β = α.

Proof. let ψ be homogeneous and ψ∗dβ = dα. We denote the Liouville vector fields by
Z and Y and the corresponding flow by φZt and φYt , t ∈ R. Since ψ is a homogeneous
symplectomorphism, we have ψ(φZt (x)) = φYt (ψ(x)) for all x ∈ X. Differentiate the equation
and evaluate at 0, we obtain that dψx(Z(x)) = Y (ψ(x)), i.e., Y = ψ∗Z. So for any differential
p-form ν on Q,

(ψ∗(ιY ν)) (v1, · · · , vp−1) = (ιY ν)(ψ∗v1, · · · , ψ∗vp−1)

= ν(Y, ψ∗v1, · · · , ψ∗vp−1)

= (ψ∗ν)(Z, v1, · · · , vp−1)

= (ιZ(ψ∗ν)) (v1, · · · , vp−1).

That is, ψ∗ ◦ ιY = ιZ ◦ ψ∗. In particular, ψ∗α = ψ∗ιZdα = ιY ψ
∗dα = β.

Proposition 2.1.8. A co-orientation preserving contactomorphism ϕ : (N, ξ)→ (P, η) gives
rise to a unique homogeneous symplectomorphism ϕ̃ : SN → SP between their symplectiza-
tions. On the other hand, a homogeneous symplectomorphism ψ : (X, dα)→ (Q, dβ) induces
a contactomorphism on the contact quotient in Proposition 2.1.5. These two constructions
are inverse to each other if X and Q come from symplectization.

Proof. Assume (N, ξ) and (P, η) are co-oriented by α and β. The equation dφx(ξx) = ηϕ(x)

implies that ϕ∗β = hα for some h > 0. More precisely, let R be the Reeb vector field
of α, then h = β(ϕ∗R). Define ϕ̃ : (N × R>0, d(tα)) → (P × R>0, d(sβ)) by ϕ̃(x, t) =
(ϕ(x), (h(x))−1t). Then ϕ̃∗sβ = t 1

h
ϕ∗β = tα so ϕ̃ is a homogeneous symplectomorphism.

Now assume there is another lifting ϕ̃′. Since they both descend to ϕ, there is g > 0 such that
ϕ̃′(x, t) = g(x)ϕ̃(x, t). But then tα = (ϕ̃′)∗tβ = gϕ∗tβ = gtα so g ≡ 1. Since ψ preserves
the Liouville form, it is clear that ψ descends to a contactomorphism on the quotient. And
we also see the that two constructions are inverse to each other when the homogeneous
symplectic manifolds are given by symplectization.
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Example 2.1.9. We consider the case when X = Q = Ṫ ∗M is the cotangent bundle away
from the zero section for some manifold M . One can identify it as the symplectization of S∗M
by picking a metric g. Let ϕ : S∗M → S∗M be a co-orientation preserving contactomorphism
and we would like to lift it to a homogeneous symplectomorphism ϕ̂ : Ṫ ∗M → Ṫ ∗M .

We describe here how the identification intertwines with the construction in the propo-
sition. Denote s the section of p : Ṫ ∗M → S∗M which is given by the unit covectors. We
claim that there is a (unique) section t : S∗M → Ṫ ∗M so that ϕ∗(t∗αcan) = s∗αcan. (Note
we cannot just require t = s ◦ ϕ−1 since this would implies idS∗M = ϕ−1.) If such t exists,
then t∗αcan = (ϕ−1)∗s∗αcan = hs∗αcan for some h ∈ C∞(S∗M ;R>0) given by ϕ. So we
simply define t : S∗M → Ṫ ∗M by t = h · s where ‘·′ is the R>0 action. Then we can define
ϕ̂ : Ṫ ∗M → Ṫ ∗M by ϕ̂ =

√
g · (t ◦ φ ◦ p). One can compute that

ϕ̂∗αcan =
√
g · (p∗ ◦ ϕ∗ ◦ t∗αcan) =

√
g · (p∗ ◦ s∗αcan)

=
√
g · (s ◦ p)∗αcan =

√
g · 1
√
g
αcan = αcan

is a symplectomorphism. Note that we use s ◦ p(x, ξ) =
(

1/
√
gx(ξ, ξ)

)
(x, ξ) for the second

to last equality.
Now consider a family of isotopy ϕt : S∗M → S∗M such that ϕ0 = idS∗M . The require-

ment (ϕ−1
t )∗s∗αcan = hts

∗αcan ensures ht > 0 since h0 ≡ 1. We can then lift ϕt to a family
of homogeneous symplectomorphism ϕ̂t : Ṫ ∗M → Ṫ ∗M by the above process. Since this
process can be reserved, we see that there is a one-to-one correspondence between contact
isotropies on S∗M and homogeneous isotropies on Ṫ ∗M . Note that the family version of
isotopies works similarly.

2.2 Stable categories

We will work in the higher categorical setting developed in [36] and [37]. The main purpose
of the rest of the chapter is to fix notations. A thorough beginner guide as well as the set-up
needed to work over a field k of characteristic 0 can be found in [16, Chapter I.1]. To work
over more general coefficients, one requires further the theory of rigid categories from [28].
Since the relative case enjoys the same formal properties which are needed for the purpose of
as the absolute case, we fix once and for all a rigid symmetric monoidal category (V0,⊗, 1V)
and its Ind-completion V := Ind(V0). Unless specified, we will assume without mentioning
that all the categories we consider will be tensored over and thus enriched in V and functors
between those are V-enriched as well.

The main advantages for working in the higher categorical setting is that there is an
abundance of limits and colimits (in an appropriate sense). As a result, many constructions
can be performed formally as universal constructions which greatly simplifies the situation.
Because of the higher categorical nature of this paper, we will refer an ∞-category C simply
as a category and when we need to emphasis that it is in particular an ordinary category,
we will refer it as a 1-category.

Recall that a presentable category is a category with certain cardinality assumptions.
Roughly speaking, such a category is large enough to contain (small) colimits but is controlled
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by a small category. A main consequence of these assumptions is that the adjoint functor
theorem holds. See [36, Corollary 5.5.2.9]. In addition, up to set-theoretic issues, the totality
of such categories forms a (very large) category itself which has nice properties concerning
limits and colimits. We will not consider the whole collection of such categories but a small
portion of it which satisfies stronger finiteness conditions which we now recall.

Definition 2.2.1. Let C be a category. An object c ∈ C is compact if Hom(c,−) preserve
(small) filtered colimit. That is for any (small) filtered index category I and any functor
X : I → C, the canonical morphism

lim−→
I

Hom(c,Xi)→ Hom(c, lim−→
I

Xi)

is an isomorphism. Here, we use the notation lim−→
I

instead of colim
I

to emphasis the index

category I is filtered.

Definition 2.2.2. A category C is compactly generated if there exists a small subcategory
C0 ⊆ C consisting of compact objects of C such that C is generated by C0 under filtered
colimits. That is, Ind(C0) ∼= C where Ind denotes the Ind-completion.

Definition 2.2.3. Let Cat denote the (very large) category of categories. We use PrL
ω to

denote the (non-full) subcategory of Cat whose objects are compactly generated categories
and morphisms are functors which preserve small colimits and compact objects. We also
use cat to denote the subcategory of Cat consisting of idempotent complete small categories
which admit finite colimits whose morphisms are given by functors which preserve finite
colimits.

Proposition 2.2.4 ([36, Proposition 5.5.7.8]). The funtor Ind : cat → PrL
ω taking C0 to its

ind-completion Ind(C0) is an equivalence. Its inverse is given by the functor θ : PrL
ω → cat

sending C to Cc, the subcategory of C consisting compact objects.

Proposition 2.2.5 ([36, Proposition 5.5.7.11]). The category PrL
ω and hence cat admits

small colimits, which can be computed in Cat as limits by passing to right adjoints. Here we
use the fact that a morphism F : C→ D in PrL

ω is a left adjoint since it preserves colimits.

Classically, one use the theory of triangulated categories to encode homological informa-
tion. They are 1-categories with structures and can be used to remember a small portion
of homotopies. However, limits and colimits are scarce in this setting. For example, the
kernel of the (unique) non-zero morphism e : Z/2→ Z/2[1] in D(Z) does not exist. See, for
example, [54, 2.2.1]. Hence, we use the theory of stable categories [37, Chapter 1] in this
paper instead.

Definition 2.2.6. A category C is pointed if there exists a zero object 0, i.e., an object
which is both initial and final.

A sequence X → Y → Z in a pointed category C is a fiber (resp. cofiber) sequence if the
diagram
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X Y

0 Z

is a pullback/pushforward. In this case, we say X (resp. Z) is the fiber (resp. cofiber) of
the corresponding morphism Y → Z (resp. X → Y ).

Definition 2.2.7. A pointed category C is stable if fibers and cofibers exist and a diagram as
above is a fiber sequence if and only if it is a cofiber sequence. We say a functor F : C→ D

between stable categories is exact if F preserves finite limits and finite colimits. Note in a
stable category C finite limits are the same as finite colimits so preserving one kind means
preserving the other.

Remark 2.2.8. We recall that in the stable case. An object X is compact if and only if
Hom(X,−) preserves coproducts.

Example 2.2.9. A stable category C admits a “shifting by 1” automorphism [1] : C → C

which can be defined by X 7→ cof(X → 0). Its inverse is the shifting by −1 automorphism
[−1] : C→ C which can defined by X 7→ fib(0→ X). In the case when C = V , these shiftings
are given by shifting the degree of the chain complexes.

Example 2.2.10. Let C be a stable category. For X, Y ∈ C, the direct sum X ⊕ Y in C

can be computed as cof(Y [−1]
0−→ X) = fib(Y

0−→ X[1]).

We will use the following lemma:

Lemma 2.2.11. Let C be a stable category and X, Y , Z, X ′, Y ′, and Z ′ ∈ C. Assume we
have the following commutative diagram

X Y Z

X ′ Y ′ Z ′

α β γ

such that each row is a fiber sequence. Let X ′′ = cof(α), Y ′′ = cof(β) and Z ′′ = cof(γ) be
the corresponding cofibers of the vertical maps. Then there exist a canonical fiber sequence
X ′′ → Y ′′ → Z ′′.

In particular, for f1 : X1 → X2 and f2 : X2 → X3, we have a fiber sequence cof(f1) →
cof(f2 ◦ f1) → cof(f2). This special case is usually referred as the octahedral axiom in the
setting of triangulated categories.
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Proof. The goal is to show that Z ′′ is the cofiber of (X ′′ → Y ′′). Recall that cofibers are
computed as a colimit of the diagram I = [· ← · → ·]. For example, the object Z is computed
as the colimit given by the diagram 0← X → Y . Now we consider the following diagram.

0 Y Y ′

0 X X ′

0 0 0

Taking colimit for the vertical arrows gives 0 ← Z → Z ′ and taking the colimit again
gives Z ′′. Similarly, taking first the horizontal arrows and then the vertical arrows gives
cof(X ′′ → Y ′′). But colimits commute with each other and thus Z ′′ = cof(X ′′ → Y ′′).

Now for the special case, we apply the above result to the commutative diagram

X1 X2

X1 X3

f1

f2 ◦ f1

f2

Example 2.2.12. Consider two short exact sequences in a Grothendieck abelian 1-category
A and compatible maps between them as the following.

0 X Y Z 0

0 X ′ Y ′ Z ′ 0

α β γ

Recall that A naturally embeds into a stable category D(A) which is usually referred as the
Derived category of A. See for example [37, Section 1.3]. An application of the above lemma
implies a special case of the snake lemma in classical homological algebra.

We denote PrL
ω,st and st the subcategory of PrL

ω and cat which consists of stable categories.
We recall that the property of being stable is compatible with the finiteness condition we
discussed earlier. In particular, the Ind-completion Ind(C0) of a (small) stable category C0

is stable . Similarly, the subcategory of compact objects Cc of a compactly generated stable
category C is stable.

11



Proposition 2.2.13. The equivalence Ind : cat � PrL
ω : θ restricts to the (very large)

subcategories consisting of stable categories

Ind : st� PrL
ω,st : θ.

2.3 Tensors products of stable categories

We mention that there is a symmetric monoidal structure ⊗ on PrL
st [37, 28]. The following

lemma implies that it restricts to a symmetric monoidal structure on PrL
ω,st. By Proposition

2.2.13, we thus obtain a symmetric monoidal structure ⊗ on st by sending (C0,D0) to
(Ind(C0)⊗ Ind(D0))c, and it has particular nice descriptions.

Lemma 2.3.1 ([16, Proposition 7.4.2]).
Assume C and D are compactly generated stable category over V.

1. The tensor product C ⊗ D is compactly generated by objects of the form c0 ⊗ d0 with
c0 ∈ Cc and d0 ∈ Dc.

2. For c0, d0 as above, and c ∈ C, d ∈ D, we have a canonical isomorphism

HomC(c0, c)⊗ HomD(d0, d) = HomC⊗D(c0 ⊗ d0, c⊗ d).

We will need this lemma concerning the fully-faithfulness of the tensors of functors.

Lemma 2.3.2. If the functors fi : Ci → Di for i = 1, 2 in PrL
st are fully-faithful, then their

tensor product f1 ⊗ f2 : C1 ⊗ C2 → D1 ⊗D2 is fully-faithful if one of the following condition
is satisfied:

1. The functor f admits a left adjoint.

2. The right adjoint of f is colimit-preserving.

Proof. We prove (1) and leave (2) to the reader. We first note that since f1⊗f2 = (idD1 ⊗f2)◦
(f1 ⊗ idC2). It is sufficient to prove the case when f2 = idC2 . Denote by fL1 : D1 → C1 the
left adjoint of f1. We note that since for any Y ∈ C1,

Hom(fL1 f1X, Y ) = Hom(f1X, f1Y ) = Hom(X, Y ),

the left adjoint fL1 is surjective. Now we notice that being surjective and being a left adjoint
are both preserved under (−) ⊗ idC2 . Thus the right adjoint f1 ⊗ idC2 is fully-faithful since
it has a surjective left adjoint by a similar argument as above.

Finally, let (C,⊗, 1C) be a symmetric monoidal (∞-)category. We recall the notion of
dualizability which we will use later.
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Definition 2.3.3. An object X in C is dualizable if there exists Y ∈ C and a unit and a
counit η : 1C → Y ⊗X abd ε : X ⊗ Y → 1C such that the pair (η, ε) satisfies the standard
triangle equality that the following compositions are identities

X
idX ⊗η−−−−→ X ⊗ Y ⊗X ε⊗idX−−−→ X,

Y
η⊗idY−−−→ Y ⊗X ⊗ Y idY ⊗ε−−−→ Y.

We note that this condition implies that the triple (Y, η, ε) is unique in the∞-categorical
sense.

The relevant proposition concerning dualizability which we need is the following: Let A ∈
PrL

ω,st be compactly generated. Denote by A0 its compact objects and by A∨ := Ind(Aop
0 ) the

Ind-completion of its opposite category. We first mention that the proof of the Proposition
2.3.4 below implies that A∨ ⊗ A = Funex(Aop

0 ⊗ A0,V) = FunL(A∨ ⊗ A,V). Here the
superscript ‘ex’ means exact functors and the ‘L’ means colimit-preserving functors. As a
result, the Hom-pairing HomA0 : Aop

0 ⊗A0 → V induces a functor

εA : A∨ ⊗A→ V

by extending HomA0 to the Ind-completion. On the other hand, as a functor from A
op
0 ⊗A0

to V , it also defines an object in A⊗A∨ by the above identification, which is equivalent to
a functor

ηA : V → A⊗A∨.

Proposition 2.3.4 ([28, Proposition 4.10]). If A ∈ PrL
st is compactly generated, then it is

dualizable with respect to the tensor product ⊗ on PrL
st, and the triple (A∨, ηA, εA) exhibits

A∨ := Ind(Ac,op) as a dual of it.

Remark 2.3.5. We note that when A0 contains only one object, Funex(Aop
0 ⊗A0,V) recover

the notion of bi-modules. As a result, the tautological bimodule HomA0 is usually referred
as the diagonal bimodule and is denoted by IdA0 .

2.4 Quotients of small stable categories

We discuss quotients of (small) stable categories. Let C0 ∈ st be a small idempotent complete
stable category and K be a collection of objects in C0 . We would like to construct an
associated localization C0 → C0/K so that a morphism f : X → Y with cof(f) ∈ K
becomes an isomorphism in C0/K. This localization can be defined as a quotient in the
following way. First, we take the stable subcategory 〈K〉 generated by K, and then take its
idempotent completion which we will denote it by N = N(K). Abstract argument implies N
is still stable and is embedded in C0 as the subcategory of retracts of objects in 〈K〉 because
C0 is idempotent complete. Let ι∗ : N ↪→ C0 denote the inclusion and we recall that colimits
exist in st by Proposition 2.2.5.

Definition 2.4.1. We define the quotient C0/K of C0 by K as the cofiber cof (ι∗) taken in
st and use j∗ : C0 � C0/K to denote the projection.
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We have the following description of morphisms in C0/K.

Proposition 2.4.2. Let X, Y be objects in C0. Then the Hom in C0/K can be computed as
a colimit,

HomC0/K(j∗X, j∗Y ) = colim
Y→Y ′

HomC0(X, Y ′)

where the colimit runs through the morphism Y → Y ′ whose cofiber is in N. Alternatively,
we can compute the Hom-spaces by varying the first component, i.e.,

HomC0/K(j∗X, j∗Y ) = colim
X′→X

HomC0(X ′, Y )

with cof(X ′ → X) ∈ N.

To prove the proposition, we first look more closely into the construction. Begin with

the inclusion N
ι∗
↪−→ C0, we translate to the category PrL

ω by taking Ind by Proposition 2.2.13
and obtain

Ind(N)
Ind(ι∗)
↪−−−→ Ind(C0).

Because Ind(ι∗) preserves small colimits, it admits a right adjoint Ind(ι∗)
R.

Lemma 2.4.3. For X ∈ C0 ↪→ Ind(C0), the right adjoint of Ind(ι∗) can be given by the
formula

Ind(ι∗)
R(X) = “ colim

α:Z→X, Z∈N
”Z.

Here we use the quotation “ colim ” to emphasis the colimit is taken formally in Ind(N).

Proof. By definition, the formal colimit “ colim
α:Z→X, Z∈N

”Z is an object of Ind(N). Because an

object of Ind(N) is of the form “ lim−→ ”W over some filtered colimit by some objects in N, it
is sufficient to show, for all W ∈ N,

HomC0(ιW,X) = HomInd(N)(W, “ colim
α:Z→X, Z∈N

”Z).

Since Ind(ι) preserves compact objects, we compute

HomInd(N)(W, “ colim
α:Z→X, Z∈N

”Z) = colim
α:Z→X, Z∈N

HomN(W,Z) = HomC0(W,X).

Proof of the proposition 2.4.2. By passing to right adjoints using Proposition 2.2.13, the
cofiber cof(Ind(ι∗)) can be computed as,

j∗ : fib(Ind(ι∗)
R) ⊆ Ind(C0),

the subcategory consisting of objects Y such that Hom(X, Y ) = 0 for all X ∈ N. Because
we are in the stable setting, this gives us a fiber sequence

Ind(ι∗)Ind(ι∗)
R → id→ j∗j

∗.
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Thus, for X, Y ∈ C0, one computes

HomC0/K(j∗X, j∗Y ) = HomC0(X, j∗j
∗Y )

= HomC0

(
X, cof(Ind(ι∗)Ind(ι∗)

RY → Y )
)

= HomC0

(
X, cof(“ colim

α:Z→Y, Z∈N
”Z → Y )

)
= colim

α:Z→Y, Z∈N
HomC0 (X, cof(Z → Y ))

= colim
Y

β−→Y ′, cof(β)∈N
HomC0(X, Y ′).

Here, we notice the last equation is simply a change the expression for the same colimit.
To obtain the similar formula which we varies the first component, we notice that there

is equivalence (C0/K)op = C
op
0 /N

op because they satisfies the same universal property. We
thus compute

HomC0/K(j∗X, j∗Y ) = Hom(C0/K)op(j
∗Y, j∗X)

= HomC
op
0 /Nop(j

∗Y, j∗X)

= colim
X

γ←−X′, cof(γ)∈Nop
HomC

op
0

(Y,X ′)

= colim
X′

γ−→X, cof(γ)∈N
HomC0(X ′, Y ).

We will use the following ”snake lemma” for categories.

Lemma 2.4.4. Consider the following diagram in PrL
ω,st :

C0 C C1

D0 D D1

i p

j q

F0 F F̄

where p and q are the quotient functor of the inclusion i and j, F0 is the restriction of F which
factors through D0 and F̄ is the induced functor between the quotients. Let ι : fib(F̄ ) ↪→ C1

denote the fiber of F̄ , π : D0 � cof(F0) the cofiber of F0 and ∂ : fib((̄F )) → cof(F0) the
functor given by the composition ∂ = π ◦ jR ◦F ◦ pR ◦ ι. If F is an equivalence, then ∂ is an
equivalence.

Proof. For simplicity, we assume C = D and F is the identity so the diagram becomes,
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fib(F̄ )

C0 C C1

D0 C D1

cof(F0)

i p

j q

pR

jR

ι

F0 F̄

π

We will prove that the functor θ := ιR ◦ p ◦ j ◦ πR is the inverse by showing that θ ◦
∂ = idfib(F̄ ). The equation ∂ ◦ θ = idcof(F0) can be proved similarly. First write out θ∂ as
ιRpjπRπjRpRι. Recall that in the stable setting, the sequence C0 ↪→ C � C1 comes with a
fiber sequence of functors

iiR → idC → pRp.

Apply this fact to C0 ↪→ D0 � cof(F0), we see there is a fiber sequence

F0F
R
0 → id→ πRπ.

Apply j ◦ (−) ◦ jR and the fiber sequence becomes iiR → jjR → jπRπjR. Now apply
p ◦ (−) ◦ pR and the we see that pjjRp = pjπRπjRpR since p ◦ i = 0. Thus, we can simplify
θ∂ to ιRpjjRpRι. Similar argument allows us to further simplify θ∂ to ιRppRι = ιR idC ι =
idfib(F̄ ).
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Chapter 3

Microlocal sheaf theory

We will consider microlocal sheaf theory in the higher categorical setting over a fixed co-
efficient V as mentioned in the last section. We begin this chapter with recalling classical
definitions and results from the foundational work in [32]. Then we recall previous re-
sults concerning the category ShΛ(M) of sheaves microsupported in a fixed (subanalytic)
Lagrangians from [21]. One key property which ShΛ(M) satisfies is that it is compactly gen-
erated and so an object in PrL

ω,st. Based on this result, we prove a compatibility statement

for ShΛ(M) regarding the symmetric monoidal product ⊗ on PrL
st in Section 3.4. We also

identify its categorical dual ShΛ(M)∨ geometrically as Sh−Λ(M) in Section 3.6. The last
statement provides a classification of colimit-preserving functors between such categories in
Theorem 1.0.3.

3.1 General sheaf theory

For a topological space X, the category of V-valued presheaves is the category PSh(X) :=
Fun(OpopX ,V) of contravariant functor from the 1-category of open sets in X to V . The
category of sheaves on X, Sh(X), is the reflexive subcategory of PSh(X) consisting of those
presheaves F which turn colimits in OpX to limits. In more concrete terms, F is a sheaf if for
any open cover U of an open set U ⊆ X, the canonical map F (U)

∼−→ limUI∈C(U) F (UI) is an
isomorphism, i.e., sections over U can be computed as the totalization of the sections of the
corresponding Čech nerve C(U). Recall that the term ‘reflexive’ means that the inclusion
Sh(X) ↪→ PSh(X) admits a left adjoint, which is usually referred as sheafification (−)†.
Thus, the inclusion is limit-preserving. Since PSh(X) inherits limits and colimits from V , so
does Sh(X) where colimits in Sh(X) can be computed as the sheafification of the colimits
in PSh(X)

We also recall the six-functor formalism. First, there is a symmetric monoidal structure
(Sh(X),⊗) on Sh(X) which is induced from V . The unit of this tensor product is the sheaf
1X which is the sheafification of the presheaf (U 7→ 1V) whose restrictions are given by the
identity id1. For a fixed sheaf F , the functor (−)⊗F which is given by tensoring with F has
a right adjoint Hom(F,−). This provides Sh(X) with an internal Hom. The global section
of this sheaf Hom is the V-valued Hom, i.e., Γ(X;Hom(G,F )) = Hom(G,F ) ∈ V for any
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F,G ∈ Sh(X).
Let f : X → Y be a continuous map. There is a pushforward functor f∗ : Sh(X)→ Sh(Y )

induced by pulling back open sets f−1 : OpY → OpX , V 7→ f−1(V ). This functor admits a
left adjoint f ∗ : Sh(Y ) → Sh(X) and the adjunction (f ∗, f∗) is usually referred as the star
pullback/pushforward. When X and Y are both locally compact Hausdorff spaces, there is
another pair of adjunction (f!, f

!) such that f! : Sh(X) → Sh(Y ) and f ! : Sh(Y ) → Sh(X).
This adjunction is usually referred as the shriek pullback/pushforward. When f is proper, f!

coincide with f∗.

Remark 3.1.1. Since a large portion of this paper is a sheaf-theoretic parallel of [21], we
mention that their setting corresponds to the choice V = Z -Mod, the presentable stable
category of modules over Z. It can be modified as the dg category of (possibly unbounded)
chain complexes of abelian groups with quasi-isomorphisms inverted. See for example [12].
This category is compactly generated and one usually denote the compact objects (Z -Mod)c

by Perf Z. When representing Z -Mod by chain complexes, Perf Z consists of objects which
are quasi-isomorphic to bounded chain complexes whose cohomology groups are finite rank.

Example 3.1.2. When i : Z ↪→ X is a locally closed subset of X, one usually use F |Z to
denote i∗F for F ∈ Sh(X) and call it the restriction of F on Z.

Example 3.1.3. Consider a closed set i : Z ↪→ X and an open set j : U ↪→ X. In these
cases, we have i∗ = i! and j∗ = j!. In addition, the functors i∗, j∗, j! are fully faithful with
the corresponding adjoints being a left inverse.

Example 3.1.4. Let x ∈ X be a point. For F ∈ Sh(X), we call the object Fx := F |{x} ∈
Sh({x}) = V the stalk of F at x. An key property of the stalks is that a morphism G→ F
is an isomorphism if and only if it induces isomorphism Gx → Fx on the stalk at x for all
x ∈ X. We also use the convention that F has perfect stalk at x if Fx ∈ V0 or, equivalently,
Fx is perfect. We say that F has perfect stalks if Fx is perfect for all x ∈ X.

Example 3.1.5. Let aX : X → {∗} be the projection to a point. The object a!
X1 is usually

denoted as ωX and is referred as the dualizing complex/sheaf. When X is a C0-manifold,
ωX is a locally constant sheaf whose stalk is given by 1V [dimX].

Now fix a topological space X. We see that taking integer coefficient sheaves itself forms
a presheaf Sh in Cat: For an open set U ⊆ X, we assign the category Sh(U). For an inclusion
of open sets iU,V : U ↪→ V , we assign the pullback functor i∗U,V : Sh(V ) → Sh(U) which is
the right adjoint of iU,V ! : Sh(U)→ Sh(V ).

Proposition 3.1.6. The presheaf Sh : OpX → Cat is a sheaf.

Proof. Let U be an open set of X and U an open cover of U . The functor

lim
UI∈C(U)

i∗UI ,U : Sh(U)→ lim
UI∈C(U)

Sh(UI)

is an equivalence and its inverse limUI∈C(U) Sh(UI)→ Sh(U) can be described by

(FUI )UI∈C(U) 7→ colim
UI∈C(U)

(iUI ,U)!FUI .
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We recall some standard properties of the six-functor formalism. First, the categories
of sheaves has a structure of base change. (See [30] for the exact statement in the higher
categorical setting.)

Theorem 3.1.7. Consider a pullback diagram of locally compact Hausdorff spaces,

X ′ Y ′

X Y
f

f ′

g′ g

.

There is an equivalence g∗f! = f ′! g
′∗.

The push/pull functors satisfy some compatibility properties with ⊗ and Hom. We list
a few which we will use:

Proposition 3.1.8. Let f : X → Y be a continuous map between locally compact Hausdorff
spaces. Then:

1. f ∗(F ⊗G) = f ∗F ⊗ f ∗G, for F , G ∈ Sh(Y ),

2. (f!G)⊗ F = f!(G⊗ f ∗F ), for F , G ∈ Sh(X),

3. Hom(f!G,F ) = f∗Hom(G, f !F ), for F ∈ Sh(X), G ∈ Sh(Y ),

4. f ! Hom(G,F ) = Hom(f ∗F, f !F ), for F , G ∈ Sh(Y ).

We recall the excision fiber sequences. Let X be a locally compact Hausdorff space,
i : Z ↪→ X be a close set, and j : U = X \ Z ↪→ X be its open complement, then j∗i∗ = 0
by base change and there are fiber sequences

j!j
!F → F → i∗i

∗F

i!i
!F → F → j∗j

∗F

where the arrows are the units/counits of the shriek/star adjunction pairs. Such a triple
(Sh(X), Sh(Z), Sh(U)) is usually referred as a recollement in homological algebra. See for
example [37, Section A.8]. When Z is locally closed, one denotes FZ = i!i

∗F and ΓZ(F ) =
i∗i

!F for F ∈ Sh(X). Thus, one can write the above fiber sequences as

FU → F → FZ , ΓZ(F )→ F → ΓU(F ).

Let aX : X → {∗} denote the projection to a point. We use AX to denote the pullback
a∗XA for A ∈ Sh({∗}) = V . When X is a manifold, V = Z -Mod, and A is an abelian group
regarded as a chain complex concentrated as 0, a standard representative of AX is the A-
coefficient singular cochains (U 7→ C∗(U ;A)). When Z ⊆ X is a locally closed subset of X,
we abuse the notation and write AZ for both the sheaf in Sh(Z) or its shriek pushforward.
When A = 1V , we abuse the notation and write it simply as 1Z .
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Definition 3.1.9. We call AZ the constant sheaf on Z with stalk A. In general, we say a
sheaf F is a locally constant sheaf or a local system if there exists an open cover U such that
F |U is constant for U ∈ U and we use Loc(X) to denote the subcategory spanned by such
sheaves.

Example 3.1.10. Let i : Z ↪→ X be a local closed subset and F ∈ Sh(X). By the above
(1) and (2) of Proposition 3.1.8, F ⊗ 1Z = F ⊗ i!i∗1X = i!(i

∗F ⊗ i∗1X) = i!i
∗(F ⊗ 1X) = FZ .

A similar statement holds for open inclusions and the fiber sequence FU → F → FZ can be
obtained from tensoring F with the canonical one

1U → 1X → 1Z .

We also consider set-theoretic invariants associated to sheaves.

Definition 3.1.11. Let X be a topological space and F ∈ Sh(X). The support of a sheaf
F is defined to be the closed subset

supp(F ) = {x ∈ X|Fx 6= 0}.

Example 3.1.12. Let i : Z ↪→ X be a closed subset. The pushforward i∗ identifies Sh(Z)
as the subcategory of Sh(X) consisting of sheaves F whose support supp(F ) is contained in
Z.

Before leaving this section, we recall a fundamental lemma for microlocal sheaf theory,
which holds for general Hausdorff spaces.

Lemma 3.1.13 ( [32, Proposition 2.7.2] , [45, Theorem 4.1] ). Let X be a Hausdorff space,
F ∈ Sh(X). Let {Us}s∈R be a family of open subsets of X. We assume

(a) for all t ∈ R, Ut =
⋃
s<t Us,

(b) for all pairs (s, t) with s ≤ t, the set Ut \ Us ∩ supp(F ) is compact,

(c) setting Zs = ∩t>sUt \ Us, we have for all pairs (s, t) with s ≥ t, and all x ∈ Zs \ Ut,

(ΓX\UtF )x = 0.

Then we have the isomorphism in Sh(X), for all t ∈ R,

Γ(
⋃
s

Us;F )
∼−→ Γ(Ut, F ).

3.2 Microlocal sheaf theory

Now let M be a Cα-manifold where α ∈ Z>0 ∪ {∞, ω}. The term ‘microlocal’ usually refers
to ‘local’ in the cotangent bundle T ∗M . In [32, Section 5.1], Kashiwara and Schapira define
the notion of microsupport, which is a set in T ∗M enhancing the support. One description
of it is the following: Let F be a sheaf and φ a C1 function on M , let m ∈ φ−1(t). We denote
by iφ,t : {x|φ(x) ≥ t} ↪→ M the closed inclusion. We say m is a cohomological F -critical
point of φ if (i!φ,tF )m 6= 0.
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Definition 3.2.1. The microsupport of a sheaf F is defined to be the closure of the locus
of differentials of the C1 functions at their cohomological F -critical points. That is,

SS(F ) =
⋃

φ∈C1(M)

{(x, ξ)|∃t ∈ R, (i!φ,tF )x 6= 0, ξ = dφx}.

Although the microsupport is defined as a C1-invariant, it is sufficient to check a smaller
class of functions.

Proposition 3.2.2 ([32, Proposition 5.1.1]). The microsupport of a sheaf F is the same as
the closure of the locus of differentials of the Cα functions at their cohomological F -critical
points. That is,

SS(F ) =
⋃

φ∈Cα(M)

{(x, ξ)|∃t ∈ R, (i!φ,tF )x 6= 0, ξ = dφx}.

It is straightforward to see that the microsupport SS(F ) of a sheaf F ∈ Sh(M) is conic
and closed, and its intersection with the zero section SS(F ) ∩ 0M = supp(F ) recovers the
support. The involutivity theorem [32, Theorem 6.5.4] of Kashiwara and Schapira states
that SS(F ) is always a singular coisotropic. Since SS(F ) is conic, it can be recovered from
supp(F ) and its projectivization SS∞(F ) := (SS(F ) \ 0M)/R>0.

Definition 3.2.3. For a closed conic subset X ⊆ T ∗M , we use ShX(M) to denote the
subcategory of sheaves consisting of those F such that SS(F ) ⊆ X. Similarly, for a closed
subset X ⊆ S∗M , we use ShX(M) to denote the subcategory of sheaves consisting of those
F such that SS∞(F ) ⊆ X. Note for a closed X ⊆ S∗M , ShX(M) = Sh(R>0X∪0M )(M).

Example 3.2.4. Let M be a manifold. Being a local system is a microlocal condition. More
precisely, Loc(M) = Sh0M (M).

Example 3.2.5 ([32, Proposition 5.3.1]). More generally, let M = Rn, γ be a closed convex
cone with vertex at 0, and denote by γ◦ := {ξ ∈ (Rn)∗|ξ(v) ≥ 0, v ∈ γ} its dual cone.
One has SS(1γ) ∩ T ∗0 Rn = γ◦. As a corollary, if M ′ ⊆ M is a closed submanifold, then
SS(1M ′) = N∗M ′ is the normal bundle of M ′.

One might want to assign an invariant similar to the stalks for points in (x, ξ) ∈ S∗M .
In general, the object (i!φ,tF )x depends on φ and is not an invariant associated to the point
(x, ξ). However, the situation is better when cartain transversality condition is satisfied.

Definition 3.2.6. Fix a singular isotropic Λ ⊆ S∗M , i.e, Λ is stratified by isotropic sub-
manifolds. Let f be a function defined on some open set U of M . We say that a point x ∈ U
is a Λ-critical point of f if the graph of its differential Γdf intersect R>0Λ ∪ 0M at (x, dfx).
A Λ-critical point x is Morse if (x, dfx) is a smooth point of R>0Λ∪ 0M and the intersection
Γdf ∩ Λ is transverse at (x, dfx). A function f is Λ-Morse if all its Λ-critical point is Morse.

Proposition 3.2.7 ([32, Proposition 7.5.3]). Let Λ be a singular isotropic. Assume φ is Λ-
Morse at a smooth point (x, ξ) ∈ Λ. For F ∈ Sh(M) such that SS∞(F ) ⊆ Λ in a neighborhood
of (x, ξ), the object (i!φ,tF )m ∈ V is, up to a shift, independent of φ.
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Definition 3.2.8. Let Λ ⊆ S∗M be a singular isotropic and (x, ξ) ∈ Λ a smooth point. For
F ∈ ShΛ(M), we call functors µ(x,ξ) : ShΛ(M)→ V of the form

µ(x,ξ)F := (i!φ,tF )x

microstalk functors where φ is any function which satisfies the assumption in the last Propo-
sition. Since this functor is well-defined up to a shift, which will not play a significant role
in the paper, we will abuse notation and call µ(x,ξ)F the microstalk of F at (x, ξ).

Let X ⊆ T ∗M be conic and closed, and let Λ ⊆ (T ∗M \X) be a closed conic subanalytic
isotropic. Assume SS(F ) ⊆ X∪Λ. To determine whether (x, ξ) ∈ Λ is in the microsupport of
F , by definition one has to check if (i!φ,tF )x vanishes over all functions φ such that x ∈ φ−1(t)
and dφx = ξ. However, since Λ is isotropic, it is sufficient to check the Morse ones.

Proposition 3.2.9 ([21, Proposition 4.9]). Let X and Λ be as above. Then ShX(M) ⊆
ShX∪Λ(M) is the fiber of all microstalk functors µ(x,ξ) for smooth Lagrangian points (x, ξ) ∈
Λ.

In practice, it is hard to compute the microsupport of a sheaf directly and it is usually
sufficient to deduce desired conclusions by having an upper bound. Here we collect some
standard results for microsupport estimation. Let f : M → N be a map between manifolds,
we use the following notations

T ∗M M ×N T ∗N T ∗N

M N

�

df ∗ fπ

f

πM πN

where the square on the right is the pullback of the cotangent bundle T ∗N of N along f
and df ∗ is given fiberwisely by the adjoint of the differential dfx : TxM → Tf(x)N . Let T ∗MN
denote the set

{(x, α) ∈M ×N T ∗N |df ∗xα = α ◦ dfx = 0}.
Note in case M ⊆ N is a submanifold, T ∗MN is the conormal bundle of M in N .

Definition 3.2.10 ([32, Definition 5.4.12]). Let A be a closed conic subset of T ∗N . We say
f is noncharacteristic for A if

f−1
π (A) ∩ T ∗MN ⊆M ×N 0N .

For a sheaf F ∈ Sh(M), we say f is noncharacteristic for F if it is the case for SS(F ).

Proposition 3.2.11. We have the following results:

1. ([32, Proposition 5.1.3]) If F → G→ H is a fiber sequence in Sh(M), then

(SS(F ) \ SS(H)) ∪ (SS(H) \ SS(F )) ⊆ SS(G) ⊂ SS(F ) ∪ SS(H).

This is usually referred as the microlocal triangular inequalities.
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2. ([32, Proposition 5.4.1]) For F ∈ Sh(M), G ∈ Sh(N), SS(F �G) ⊆ SS(F )× SS(G).

3. ([32, Proposition 5.4.4]) For f : M → N and F ∈ Sh(M), if f is proper on supp(F ),
then

SS(f∗F ) ⊆ fπ
(
(df ∗)−1 SS(F )

)
.

4. ([32, Proposition 5.4.5 and Proposition 5.4.13]) For f : M → N and F ∈ Sh(N), if f
is noncharacteristic for F , then

SS(f ∗F ) ⊆ df ∗(f−1
π (SS(F )))

and the natural map f ∗F⊗f !1Y → f !F is an isomorphism. If f is furthermore smooth,
the estimation is an equality.

5. ([32, Proposition 5.4.8]) Let Z ⊆M be closed. If SS(F ) ∩N∗out(Z) ⊆ 0M , then

SS(FZ) ⊆ N∗in(Z) + SS(F ).

Similarly, let U ⊆M be open. If SS(F ) ∩N∗in(U) ⊆ 0M , then

SS(FU) ⊆ N∗out(U) + SS(F ).

6. ([32, Proposition 5.4.14]) For F and G ∈ Sh(M). If SS(F ) ∩ − SS(G) ⊆ 0M , then

SS(F ⊗G) ⊆ SS(F ) + SS(G).

7. ([32, Proposition 5.4.14 and Exercise V.13]) For F and G ∈ Sh(M). If SS(F ) ∩
SS(G) ⊆ 0M , then

SS(Hom(G,F )) ⊆ SS(F )− SS(G).

If moreover G is cohomological constructible, then the natural map

Hom(G, 1M)⊗ F → Hom(G,F )

is an isomorphism. If furthermore F = ωM , i.e., when Hom(G,F ) =: DM(G) is the
Verdier dual, then SS(DX(G)) = − SS(G).

Sometimes, when the noncharacteristic condition is absent, there is still a less refined
upper bounds for pullbacks.

Definition 3.2.12 ([32, Definition 6.2.3]). We define two constructions of closed conic sub-
sets of cotangent bundles:

1. Given closed conic subsets A,B ⊆ T ∗M , we define A+̂B to be the closed subset
consisting of points (x, ξ) ∈ T ∗M such that, in some local coordinate, there exist
sequence {(xn, ξn)} in A and {(yn, ηn)} in B such that xn, yn → x, ξn + ηn → ξ, and
|xn − yn||ξn| → 0.
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2. Let i : X ↪→ M be a closed submanifold and choose a local coordinate (x, y, ξ, η) of
T ∗M such that X is given by {y = 0}. Given a closed conic subset A ⊆ T ∗M , we
define i#(A) to be the closed subset of T ∗X consisting of points (x, ξ) such that there
exists {(xn, yn, ξn, ηn)} in A such that yn → 0, xn → x, ξn → ξ, and |yn||ηn| → 0.

In general for f : M → N and closed conic subset A ⊆ T ∗N , f#(A) can be defined as
a special case of a more general construction which also includes A+̂B as a special case.
Moreover, the definition can be made free of choice of local coordinates using the technique
of deformation to the normal cone [32, Section 4.1, Section 6.2]. Also, notice that the above
construction A+̂B and i#(A) contain A + B and di∗(i−1

π (SS(F ))) as closed subsets. It can
be shown that they are equal when the noncharacteristic condition is satisfied.

Proposition 3.2.13. We have the following results:

1. ([32, Theorem 6.3.1]) Let j : U ↪→M be open and F ∈ Sh(U), then

SS(j∗F ) ⊆ SS(F )+̂N∗inU.

2. ([32, Corollary 6.4.4]) Let i : Z →M be a closed submanifold and F ∈ Sh(M), then

SS(i∗F ) ⊆ i# SS(F ).

3. ([32, Corollary 6.4.5.]) Let F , G ∈ Sh(M), then

SS(F ⊗G) ⊆ SS(F )+̂ SS(G), SS (Hom(G,F )) ⊆ SS(F )+̂ (− SS(G)) .

The notion of +̂ can also be used to measure compatibility between !-pullback and ⊗.

Proposition 3.2.14 ([32, Exercise VI.4]). Let f : M → N be a morphism of manifolds and
let F,G ∈ Sh(N). If f is non-characteristic for SS(F )+̂ SS(G), then

f ∗F ⊗ f !G = f !(F ⊗G).

As a Corollary, we mention a computational tool:

Lemma 3.2.15. Let M and N be manifolds. Then

1. p!
N1N = p∗MωM ,

2. ωM×N = ωM � ωN .

As a Corollary, ωM is invertible whose inverse can be given as ∆!1M×M .

Proof. Consider the pullback diagram:

M ×N N

M {∗}

pN

aM

pM aN
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For (1), base change a∗MaN ! = pN !p
∗
M implies that there exists a canonical map p∗Ma

!
N →

p!
Na
∗
M . This map is in general not an isomorphism but in our case, we may assume M and

N are Euclidean spaces by checking the map locally. Then the isomorphism follows from
the isomorphism 1V = Γc(Rk;V)[k] and ωRk = 1Rk [k]. For (2), we can use (1) and (4) of
Proposition 3.2.11 and compute that

ωM � ωN = p∗MωM ⊗ p∗NωN = p∗MωM ⊗ p!
M1M = p!

MωM = ωM×N .

To obtain the Corollary, we apply Proposition 3.2.14 and compute that

∆!(1M×M)⊗ ωM = ∆!(1M×M)⊗∆∗(p∗1ωM) = ∆!(p∗1ωM) = ∆!p!
2(1M) = 1M .

Finally, we mention the compatibility between microsupport and limits/colimits.

Proposition 3.2.16 ([32, Exercise V.7], [31, 2.7]). Let I be a (small) set and {Fi}i∈I be a
family of sheaves on M index by I. Then there are microsupport estimations,

SS(
⊕
i

Fi) ⊆ ∪i SS(Fi), SS(
∏
i

Fi) ⊆ ∪i SS(Fi).

Let X ⊆ T ∗M be a conic closed subset, the above microsupport estimation combined
with the adjoint functor theorem [36, Corollary 5.5.2.9] implies that the inclusion

ιX∗ : ShX(M) ⊆ Sh(M)

admits both a left adjoint ι∗X and a right adjoint ι!X . General categorical theory then implies
that the category ShX(M) is its self presentable. We will see in the next two sections that,
under some mild regularity condition, the category ShΛ(M) is in fact compactly generated
where Λ ⊆ S∗M is a singular isotropic.

3.3 Constructible sheaves

The theory of constructible sheaves is based on the results of stratified spaces. Standard
references for stratified spaces are [22] and [39].

A stratification S of X is a decomposition of X into to a disjoint union of locally closed
subset {Xs}s∈S. A set Y ⊆ X is said to be S-constructible if it is a union of strata in S. We
assume, without further mention, that a stratification should be locally finite and satisfies
the frontier condition that Xs \ Xs is a disjoint union of strata in S. In this case, there is
an ordering which is defined by s ≤ t if and only if Xt ⊆ Xs. We always implicitly chose
this ordering when regarding S as a poset. For example, we will consider its linearization
S -Mod := PSh(Sop,V).

Definition 3.3.1. For a given stratification S, a sheaf F is said to be S-constructible if
F |Xs is a local system for all s ∈ S. We denote the subcategory of Sh(X) consisting of such
sheaves by ShS(X). A sheaf F is said to be constructible if F is S-constructible for some
stratification S.
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For s ∈ S, we denote by star(s) the smallest S-constructible open set containing Xs.
Alternatively, star(s) =

∐
t≤sXt. The poset S can be then identified with the subposet

{star(s)|s ∈ S} of OpX . Hence, there is a functor S -Mod ↪→ ShS(X) induced by the re-
stricting along the inclusion of poset S ↪→ OpX . A stratification is called a triangulation if
X = |K| is a realization of some simplicial complex K and S := {|σ||σ ∈ K} is given by
the simplexes of K. We note that when S is a triangulation, the functor S -Mod ↪→ ShS(X)
is an equivalence. This follows from the fact that each Xs is contractible and the following
criterion:

Lemma 3.3.2 ([21, Lemma 4.2]). Let Π be a poset with a map to OpM , and let V [Π] denote
its stabilization. The following are equivalent

• Γ(U ;V) = 1V for U ∈ Π and Γ(U ;V)→ Γ(U \ V ;V) whenever U 6⊆ V .

• The composition V [Π] → V [OpM ] → Sh(M) is fully faithful where the second map is
given by !-pushforward.

We note that the stratification given by the product of triangulations also satisfy this
condition. Thus the following slight generalization of [21, Lemma 4.7] holds:

Proposition 3.3.3. Let S be triangulation of M . Then ShS(M) = S -Mod. If T is a
triangulation of N . Then ShS×T(M × N) = (S × T) -Mod. Here we denote by S × T the
product stratification.

Now let M be a Cα manifold for α ∈ N>0 ∪ {∞, ω}. We consider regularity conditions
for stratifications.

Definition 3.3.4. Let M and N be locally closed C1 manifolds of Rn, with N ⊂ M \M .
Consider sequences xn ∈ M and yn ∈ N such that xn, yn → y ∈ N and {TxnM} converges
to τ (in the corresponding Grassmannian). Assume also {R(xn − yn)} converges to l. We
say the pair (N,M) satisfies the Whitney condition if any such sequence satiesfies τ ⊇ l. In
general, we say a pair (N,M) of C1 submanifold manifolds of a Cα manifold X satisfies the
Whitney condition if the above condition is satisfies on local charts.

Remark 3.3.5 ([39, Chapter 4]). The Whitney condition can also be formulated without
working on coordinates. Recall the normal bundle of the diagonal ∆M ↪→ M × M can
be identified as the tangent bundle TM of M . The real blow-up Bl∆M

(M × M) can be
seen as a disjoint union P(TM) q (M × M \ ∆M) of the projective tangent bundle and
the off-diagonal. Then we say (N1, N2) satisfies the Whitney condition if for any sequence
(yn, xn) ∈ N1×N2 ⊆ Bl∆M

(M ×M) \∆M such that TxnN2 → τ and (yn, xn)→ l ∈ P(TM),
we have l ⊆ τ .

We say a stratification S is Ck if each Xs is Ck locally closed manifold. A Ck stratification
S is a Whitney stratification if (Xt, Xs) satisfies the Whitney condition for s ≤ t. Let N∗S
denote the union ∪s∈SN∗Xs of the conormals of the strata. The set N∗S is a singular conic
Lagrangian in T ∗M and the Whitney condition implies a weaker property that N∗S ⊆ T ∗X
is closed. We also use N∗∞S to denote the corresponding singular isotropic at the infinity.
The main advantage of considering Whitney stratifications are the following proposition.
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Proposition 3.3.6 ([32, Prop. 8.4.1], [21, Proposition 4.8]). For a Whitney stratification S

of a C1 manifold M , we have ShS(M) = ShN∗∞S(M) (i.e. having microsupport contained in
N∗S is equivalent to being S-constructible).

Example 3.3.7. We note that the Whitney assumption is crucial for this proposition. Con-
sider the C∞ map

f : R3 → R3

(x, y, z) 7→ (z2x, z2y, z).

Set V := {x2 + y2 = z4}, which we note is the image of C := {x2 + y2 = 1} under f . Take
the stratification S = {X1, X2, X3} of R3 where X1 := {x = z2, y = 0}, X2 := V \ X1, and
X3 := R3 \X2.

Figure 3.1: A stratification of R3 which provides a counterexample of the above proposition
when the Whitney condition is not present. The red curve is the single 1-dimensional stra-
tum X1, the black locally closed surface is the single 2-dimensional stratum X2, and their
complement is the single 3-dimensional open stratum X3.

We note that S does not satisfy Whitney condition (b). Now consider the sheaf F :=
f∗(1C). Since f is proper on C, its microsupport SS(F ) is bounded by fπ((df ∗)−1 SS(1C)).
Because SS(1C) = N∗C, the slice of (df ∗)−1 SS(1C) with {z = 0} is given by (R∗)2 × {0}
at (x, y, 0). Thus SS(F ) is contained in N∗X1 ⊆ N∗S. However, by base change F |X1 =
(f |C)∗(1S1×{0}∪{(1,0)}×R1) is not a constant sheaf.

Figure 3.2: The picture exhibiting the fact that F above is not locally constant on X1.
Stalks along from 0 are given simply by 1V = Γ({∗};V) but the stalk at 0 is Γ(S1;V).
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The above proposition is a corollary of the existence of inward cornerings defined by
applying the following lemma which is also proved in the same paper and we will use them
for the main theorem of this paper as well.

Lemma 3.3.8 ([21, Proposition 2.3]). Fix any 1 ≤ p ≤ ∞, and let S be a Cp Whitney
stratification of M . Fix a relatively compact S-constructible set Y . Let SY := {s|Xs ⊆
Y } denote the collection of strata consisting of Y and set N∗SY := ∪s∈SYN∗Xs , which is
closed in T ∗X by the Whitney condition. Then there exists a decreasing family Y ε of open
neighborhoods of Y such that as ε→ 0,

1. N∗Y ε becomes contained in arbitrary small conic neighborhood of N∗Y ,

2. N∗Y ε ∩N∗S = ∅ for ε > 0.

Definition 3.3.9. For a relative compact S-constructible open set U , an inward cornering
of U is an open set of the form

U−ε := U \ (∂U)ε.

When ε > 0 is small, the inward cornering U−ε is a codimension 0 open submanifold whose
closure U−ε is a compact manifold with corners. The family U−ε depends smoothly on ε.
Its outward conormal N∗∞,outU

−ε remains disjoint from N∗∞S as ε changes, and converges to
N∗∞S uniformly as ε→ 0.

Combining with the comment on triangulations, we obtain a simple description of sheaves
microsupported in N∗∞S for some C1 Whitney triangulation S.

Proposition 3.3.10 ([21, Proposition 4.19]). Let S be a C1 Whitney triangulation. Then,
there is an equivalence

ShN∗∞S(M) = S -Mod

1Xs ↔ 1s

where 1s is the indicator which is defined by

1s(t) =

{
1, t ≤ s.

0, otherwise.

In particular, the category ShN∗∞S(M) is compactly generated whose compact objects ShN∗∞S(M)c

are given by sheaves with compact support and perfect stalks.

Before leaving this section, we mention that categories consisting of sheaves which are
constructible with respect to a fixed stratification satisfy compatibility with the symmetric
monoidal structure ⊗ on PrL

st. Let T be a Whitney stratification of another manifold N .
The poset structure of S × T is given by the product poset structure of S and T, and one
can check directly that (S -Mod) ⊗ (T -Mod) = (S × T) -Mod. Thus the above proposition
implies that the desired results for wrapped sheaves:

Proposition 3.3.11. Let S be a Whitney triangulation of M and T a Whitney triangulation
of N . There is an equivalence

� : ShN∗∞S(M)⊗ ShN∗∞T(N)
∼−→ ShN∗∞(S×T)(M ×N)

sending 1star(s) ⊗ 1star(t) to 1star(s)×star(t).

28



3.4 Isotropic microsupport

We say a subset Λ ⊆ S∗M is isotropic if it can be stratified by isotropic submanifolds. A
standard class of isotropic subsets are given by the conormal N∗∞S of a stratification S which
we study in the last section. Assume M is real analytic and we recall that a general isotropy
which satisfies a decent regularity condition are bounded by isotropics of this form.

Definition 3.4.1. A subset Z of M is said to be subanalytic at x if there exists open set
U 3 x, compact manifolds Y i

j (i = 1, 2, 1 ≤ j ≤ N) and morphisms f ij : Y i
j →M such that

Z ∩ U = U ∩
N⋃
j=1

(f 1
j (Y 1

j ) \ f 2
j (Y 2

j )).

We say Z is subanalytic if Z is subanalytic at x for all x ∈M .

Lemma 3.4.2 ([32, Corollary 8.3.22]). Let Λ be a closed subanalytic isotropic subset of S∗M .
Then there exists a Cω Whitney stratification S such that Λ ⊆ N∗S.

Combining with the above proposition, we obtain a microlocal criterion for a sheaf F
with subanalytic microsupport being constructible:

Proposition 3.4.3 ([32, Theorem 8.4.2]). Let F ∈ Sh(M) and assume SS∞(F ) is subana-
lytic. Then F is constructible if and only if SS∞(F ) is a singular isotropic.

Another feature of subanalytic geometry is that relatively compact subanalytic sets form
an o-minimal structure. Thus, one can apply the result of [13] to refine a Cp Whitney
stratification to a Whitney triangulation, for 1 ≤ p <∞.

Lemma 3.4.4. Let Λ be a subanalytic singular isotropic in S∗M . Then there exists a C1

Whitney triangulation S such that Λ ⊆ N∗S.

Combining the above two results, we conclude:

Theorem 3.4.5. Let F ∈ Sh(M) and assume SS∞(F ) is a subanalytic singular isotropic.
Then F is S-constructible for some C1 Whitney triangulation S.

Collectively, sheaves with the same subanalytic isotropic microsupport form a category
with nice finiteness properties. Let Λ be a subanalytic singular isotropic in S∗M .

Proposition 3.4.6. Let Λ be a subanalytic singular isotropic in S∗M . The category ShΛ(M)
is compactly generated.

Proof. Fix a C1 Whitney triangulation S such that Λ ⊆ N∗∞S by Lemma 3.4.4. Recall that
S -Mod = Ind(Perf S) is compactly generated. For F ∈ ShΛ(M), there exists Fi ∈ ShN∗∞S(M)
such that ιΛ∗F = lim−→Fi. Thus

F = ι∗ΛιΛ∗F = ι∗ΛιΛ∗ lim−→Fi = lim−→ ι∗ΛFi.

Now note that ιΛ
∗Fi is compact in ShΛ(M) since ι∗Λ a ιΛ∗ a ι!Λ and the left adjoint of left

joint preserves compact objects.
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Corollary 3.4.7. When M is compact, if F ∈ ShΛ(M) has perfect stalks, then F is in
ShΛ(M)c.

Proof. Apply Lemma 3.4.4 to include ShΛ(M) ⊆ ShS(M) as in the last proposition and
conclude the statement by Proposition 3.3.10.

Now recall from Proposition 3.1.6, the presheaf Sh in Cat of (V-valued) sheaves is itself
a sheaf. Since a set can be recovered from its intersections with an open cover, the same
argument shows that the assignment U 7→ ShΛ(U) forms a sheaf ShΛ in Cat as well. In fact,
since for an open inclusion j : U ↪→ M , j∗ = j! is a right adjoint, ShΛ forms a sheaf in
PrR

st = (PrL
st)

op. By Proposition 2.2.5 and Proposition 2.2.13, passing to left adjoints turns
ShΛ to a cosheaf in PrL

ω,st, and taking compact objects further turns it to a cosheaf in st.

Proposition 3.4.8. The precosheaf ShcΛ : OpM → st is a cosheaf.

For an inclusion of subanalytic singular isotropics Λ ⊆ Λ′, by picking a C1 Whitney
triangulation S such that Λ′ ⊆ N∗∞S, a similar consideration as above shows that the inclusion
ShΛ(M) ↪→ ShΛ′(M) has both a left and a right adjoint. Thus,

Proposition 3.4.9. Passing to left adjoint, the inclusion ShΛ(M) ↪→ ShΛ′(M) induces a
canonical functor ShΛ′(M)c � ShΛ(M)c between compact objects.

Let Λ be a singular isotropic, (x, ξ) ∈ Λ, and consider the restriction of the microstalk
functor to the compactly generated categories µ(x,ξ) : ShΛ(M) → V . By applying its left
adjoint to the generator 1 ∈ V , we see that it is tautologically corepresented by the compact
object µL(x,ξ)(1) ∈ ShΛ(M)c. Furthermore, when there is an inclusion Λ ⊆ Λ′ and (x, ξ) ∈ Λ′,

the corepresentative µL(x,ξ)(1) ∈ ShΛ′(M)c is sent under ShΛ′(M)c � ShΛ(M)c to a similar

corepresentative in ShΛ(M)c and, they are tautologically sent to the zero object when (x, ξ)
is a smooth point in Λ′ \ Λ. By Proposition 3.2.9, the converse is also true:

Proposition 3.4.10 (Theorem 4.13 of [21]). Let Λ ⊆ Λ′ be subanalytic isotropics and
let D

µ
Λ′,Λ(T ∗M) denote the fiber of the canonical functor ShΛ′(M)c � ShΛ(M)c. Then

D
µ
Λ′,Λ(T ∗M) is generated by the corepresentatives of the microstalk functors µ(x,ξ) for smooth

Legendrian points (x, ξ) ∈ Λ′ \ Λ.

Before we leave this chapter, we prove Theorem 1.0.2 by generalizing of Proposition
3.3.11. Here for closed subsets X ⊆ S∗M and Y ⊆ S∗N , we use X × Y to denote the
product in S∗(M ×N) which is defined by the infinite part of the product of the cones over
them, i.e., the set

((0M ∪ R>0X)× (0N ∪ R>0Y )) /R>0 ⊆ S∗(M ×N).

Proof of Theorem 1.0.2. To deduce the general case from the triangulation case, pick a Whit-
ney triangulation T of N such that Σ ⊆ N∗T and consider the following diagram:

ShΛ(M)⊗ ShΣ(N) ShΛ×Σ(M ×N)

ShN∗S(M)⊗ ShN∗T(N) ShN∗S×N∗T(M ×N)

�

�
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The fully-faithfulness of the vertical functor on the left is implied by Lemma 2.3.2. Since
the diagram commutes, the horizontal map on the upper row is also fully-faithful. Pass to
the left adjoints and restrict to compact objects, the equivalence for the general case will
be implied by Proposition 3.4.10 and the proposition cited bolow, whose counterpart in the
Fukaya setting is discussed in a more general situation in [19, Section 6].

Proposition 3.4.11. Let (x, ξ) ∈ N∗S and (y, η) ∈ N∗T. We denote by D(x,ξ) and D(y,η)

corepresentatives of the microstalk functors at (x, ξ) and (y, η). Then D(x,ξ) �D(y,η) corep-
resents the microstalk at (x, y, ξ, η).

Proof. By Proposition 3.4.10, it’s sufficient to show that for F ∈ Sh(M) and G ∈ Sh(N),
there is an equivalence

µ(x,ξ)(F )� µ(y,η)(G) = µ(x,y,ξ,η)(F �G)

since corepresentative are unique. This is the Thom-Sebastiani theorem whose proof in the
relevant setting can be found in for example [38, Sebastiani-Thom Isomorphism] or [47,
Theorem 1.2.2].

Remark 3.4.12. We remark that the theorem is stated as compatibility between vanishing
cycles with exterior products � in the setting of complex manifold. The proof, however,
holds in our case since vanishing cycles φf (F ) are traded with Γ{Re f≥0}(F )|f−1(0) at the
beginning of the proof in for example [38]. Furthermore the various computations performed
there, for example,

f ∗(DY (F )) ∼= DX(f !F ),

for a real analytic map f : X → Y , require only R-constructibility.

3.5 Convolution

One can combine the six-functors to build more general functor between sheaves on topolog-
ical spaces. Let Xi, i = 1, 2, 3, be locally compact Hausdorff topological spaces, and write
Xij = Xi×Xj, for i < j, X123 = X1×X2 → X3, and πij : X123 → Xij for the corresponding
projections. For F ∈ Sh(X12), G ∈ Sh(X23), the convolution is defined to be

G ◦M2 F := π13!(π
∗
23G⊗ π∗12F ) ∈ Sh(X13).

When there is no confusion what X2 is, we will usually surpass the notation and simply write
it as G ◦ F . This is usually the case when X1 = {∗}, X2 = X, and X3 = Y and we think
of X as the source and Y as the target, G ∈ Sh(X × Y ) as a functor sending F ∈ Sh(X) to
G ◦ (F ) ∈ Sh(Y ). Note that from its expression, this functor is colimit-preserving.

Lemma 3.5.1 ([32, Proposition 3.6.2]). For fixed G ∈ Sh(X23), the functor G ◦ (−) :
Sh(X12)→ Sh(X13) induced by convoluting with G has a right adjoint which we denote it as
Hom◦(G,−) : Sh(X13)→ Sh(X12) and is given by

H 7→ π12∗Hom(π∗23G, π
!
13H). (3.1)
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Example 3.5.2. We note that convolution recovers ∗-pullback and !-pushforward. For
example, let f : X → Y be a continuous map and denote by i : Γf ⊆ X × Y its graph. Take
X1 = {∗}, X2 = X, and X3 = Y , then for F ∈ Sh(X),

1Γf ◦ F = πY !(1Γfπ
∗
XF ) = πY !i!i

∗π∗XF = f!F.

We note that base change implies that convolution satisfies associativity.

Proposition 3.5.3. Let Fi ∈ Sh(Xii+1) for i = 1, 2, 3. Then

F3 ◦X3 (F2 ◦X2 F1) = (F3 ◦X3 F2) ◦X2 F1.

In particular, if G1, G2 ∈ Sh(X ×X), then there is an identification of functors

G2 ◦ (G1 ◦ (−)) = (G2 ◦X G1) ◦ (−).

We will use a relative version of convolution. Let B be a locally compact Hausdorff
space viewed as a parameter space. Regard F ∈ Sh(X12×B), G ∈ Sh(X23×B) as B-family
sheaves, one can similarly define the relative convolution G◦|BF ∈ Sh(X13×B) by replacing
πij with

πij,B : X123 ×B → Xij ×B.
In the case of manifolds, convolution satisfies certain compatibility with microsupport.

For A ⊆ T ∗M12 and B ⊆ T ∗M23, we set

B ◦ A = {(x, ξ, z, ζ) ∈ T ∗M13|∃(y, η), (x, ξ, y, η) ∈ A, (y,−η, z, ζ) ∈ B}.

Note if A and B are Lagrangian correspondences satisfying appropriate transversality con-
dition, the set B ◦ A is the composite Lagrangian correspondence twisted by a minus sign
on the second component. Write qij : T ∗M123 → T ∗Mij to be the projection on the level of
cotangent bundles and q2a3 the composition of q23 with the antipodal map on T ∗M2. Then
B ◦ A = q13(q−1

2a3B ∩ q−1
12 A) and (4), (6) and (3) of Proposition 3.2.11 implies the following

corollary.

Corollary 3.5.4 ([26, (1.12)]). Assume

1. p13 is proper on M1 × supp(G) ∩ supp(F )×M3;

2. q−1
2a3 SS(G) ∩ q−1

12 SS(F ) ∩ 0M1 × T ∗M2 × 0M3 ⊆ 0M123 .

SS(G ◦ F ) ⊆ SS(G) ◦ SS(F ).

A similar microsupport estimation holds for the B-family case. One noticeable difference
for the microsupport estimation is that instead of T ∗Mij and T ∗M123 one has to consider
T ∗Mij × T ∗B and T ∗M123 × (T ∗B ×B T ∗B) instead. Here ×B is taken over the diagonal
B ↪→ B ×B. Also the projection rij : T ∗M123 × (T ∗B ×B T ∗B)→ T ∗Mij × T ∗B for the B-
component is now given by the first projection (with a minus sign) for ij = 12, the addition
for ij = 13, and the second projection ij = 23. Otherwise the microsupport estimation is
similar to the ordinary case.

Now consider a pair of manifold M and N , fix a conic closed subset Y ⊆ T ∗N , and
K ∈ ShT ∗M×Y (M × N). For F ∈ Sh(M), assumption (i) from the previous Corollary 3.5.4
is never satisfied for K ◦ F . Nevertheless, we show that SS(K ◦ F ) ⊆ Y .
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Lemma 3.5.5. Let K ∈ Sh(M ×N) and Y be a conic closed subset of T ∗N . If the micro-
support SS(K) is contained in T ∗M ×Y , then SS(p2∗H) and SS(p2!H) are both contained in
Y .

Proof. Let p1, p2 denote the projection from M×N to M and N . We would like to apply (2)
of Proposition 3.2.11 so we need to obtain properness with respect to p2. Pick an increasing
sequence of relative compact open set {Ui}i∈N of M such that M = ∪i∈N Ui and notice
that the canonical map colim

i∈N
HM×Ui → H is an isomorphism. Thus by (2), (4), and (7) of

Proposition 3.2.11, we can compute that

SS(p2!H) = SS(colim
i∈N

p2!HUi×N) ⊆ ∪i∈N SS(p2!HUi×N)

⊆ ∪i∈N p2π(SS(HUi×N) ∩ 0M × T ∗N)

⊆ ∪i∈N p2π(T ∗M × Y ∩ 0M × T ∗N)

⊆ ∪i∈N p2π(0M × Y ) ⊆ ∪i∈NY = Y.

To prove the case for p2∗ we further requires that Ui ⊆ Ui ⊆ Ui+1 and apply the same
computation to the limit F = lim

i∈N
ΓUi×N(H).

Proposition 3.5.6. Let K ∈ ShT ∗M×Y (M × N). Then the assignment F 7→ K defines a
functor

K ◦ (−) : Sh(M)→ ShY (N).

Proof. We recall that, for F ∈ Sh(M), K ◦ F := πN !(K ⊗ π∗MF ). By (iii) of Proposition
3.2.13, there is microsupport estimation

SS(K ⊗ π∗MF ) ⊆ SS(K)+̂(SS(F )× 0M) ⊆ (T ∗M × Y )+̂(T ∗M × 0N).

Now the description of +̂ in Definition 3.2.12 implies that if (x, ξ, y, η) is a point on the right
hand side, then it comes from a limiting point of a sum from (xn, ξn, yn, ηn) ∈ T ∗M ×Y and
(x′n, ξ

′
n, y

′
n, 0) ∈ T ∗M × 0N . Thus (y, η) ∈ Y , SS(K ⊗ π∗MF ) ⊆ T ∗M × Y , and we can apply

the last lemma to conclude the proof.

We will see that in the next section that the above integral transform classifies all col-
imiting preserving functors between categories of the form ShΛ(M) where Λ is a singu-
lar closed isotropic. Before we leave this section, we notice that for a conic closed sub-
set X ⊆ T ∗M , we can take any K ∈ Sh(M × M) and obtain a universal integral ker-
nel ι∗−X×XK ∈ Sh−X×X(M ×M). By the above proposition, ι∗−X×X(K) defines a functor
ι∗−X×X(K) ◦ (−) : Sh(M)→ ShX(M). On the other hand, we can consider similarly functors
Sh(M) → ShX(M) which are defined by F 7→ ι∗−X×X(K) ◦ ι∗X(F ) or F 7→ ι∗X(K ◦ F ). The
claim is that they are all the same.

Lemma 3.5.7. The following functors Sh(M)→ ShX(M) are equivalent to each other:

1. F 7→ ι∗X(K ◦ ι∗X(F )),

2. F 7→ ι∗−X×X(K) ◦ F ,
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3. F 7→ ι∗−X×X(K) ◦ ι∗X(F ).

In particular, ι∗X(F ) = ι∗−X×X(1∆) ◦ F.

Proof. We note all three of the expressions on the right hand side are in ShX(M) by the
previous Proposition 3.5.6, and we can see directly that, by Lemma 3.5.1 and the right
adjoint version of Proposition 3.5.6 that

Hom(ι∗−X×X(K) ◦G,F ) = Hom
(
G,Hom◦(ι∗−X×X(K), F )

)
= Hom

(
ι∗X(G),Hom◦(ι∗−X×X(K), F

)
= Hom(ι∗−X×X(K) ◦ ι∗X(G), F )

for F ∈ ShX(M), G ∈ Sh(M). Thus (ii) and (iii) are the same.
Now we show that Hom(ι∗−X×X(K) ◦ G,F ) = Hom(ι∗X(K ◦ ι∗XG), F ) for F ∈ ShX(M),

G ∈ Sh(M). We’ve seen that the left hand side is the same as Hom(G,Hom◦(ι∗−X×X(K), F ))
and the target is in ShX(M). A similarly computation will imply that the right hand side is
the same as Hom(G, ι!X Hom◦(K,F )) and the target is again in ShX(M). This means that
we can evaluate at G ∈ ShX(M) and prove the quality only for this case. Assume such a
case, so tautologically G = ι∗XG, and we compute that

Hom(ι∗−X×X(K) ◦G,F ) = Hom
(
ι∗−X×X(K),Hom(p∗1G, p

!
2F )
)

= Hom
(
K,Hom(p∗1G, p

!
2F )
)

= Hom(K ◦G,F ) = Hom(ι∗X(K ◦ ι∗X(G)), F ).

Note that, for the third equality, we use (4) and (7) to conclude that Hom(p∗1G, p
!
2F ) ∈

Sh−X×X(M ×M).

3.6 Dualizability

Classifying colimiting-preserving functors shares a close relation with the notion of duality in
Definition 2.3.3. In the algebraic geometric setting, this is usually referred as Fourier-Mukai
[7]. One strategy to prove such a theorem is, the evaluation and coevaluation should be
given by some sort of diagonals geometrically [15, Section 9]. The equivalence between such
geometric diagonals and the categorical diagonals discussed in Proposition 2.3.4, which is
implied by the uniqueness of duals, will provide such a classification.

In our case, we denote by ∆ : M ↪→ M × M the inclusion of the diagonal and by
p : M → {*} the projection to a point. By Proposition 1.0.2, there is an identification
ShΛ(M) ⊗ Sh−Λ(M) = ShΛ×−Λ(M ×M). Under this identification, we propose a duality
data (η, ε) between ShΛ(M) and Sh−Λ(M) in PrL

st which is given by

ε = p!∆
∗ : Sh−Λ×Λ(M ×M)→ V

η = ι∗Λ×−Λ∆∗p
∗ : V → ShΛ×−Λ(M ×M).

Recall that we use ι∗Λ×−Λ : Sh(M ×M)→ ShΛ×−Λ(M ×M) to denote the left adjoint of the
inclusion ShΛ×−Λ(M ×M) ↪→ Sh(M ×M). Note also that since V is compactly generated
by 1V , the colimit-preserving functor η is determined by its value on 1V so we will abuse the
notation and identify it with η. In order to check the triangle equalities, we first identify
id⊗ε.
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Lemma 3.6.1. Under the identification

ShΛ(M)⊗ Sh−Λ×Λ(M ×M) = ShΛ×−Λ×Λ(M ×M ×M),

the functor

id⊗ε : ShΛ(M)⊗ Sh−Λ×Λ(M ×M)→ ShΛ(M)⊗ V = ShΛ(M)

is identified as the functor

p1!(id×∆)∗ : ShΛ×−Λ×Λ(M ×M ×M)→ ShΛ(M).

Proof. Since both of the functors are colimit-preserving and the categories are compactly
generated, it is sufficient to check that p1!(id×∆)∗ ◦ � = id⊗(p!∆

∗) on pairs (F,G) for
F ∈ ShΛ(M)c and G ∈ Sh−Λ×Λ(M ×M)c by Proposition 2.3.1.

Note that we do not need the compactness assumption for the following computation. Let
q1 : M3 → M and q23 : M3 → M2 denote the projections q1(x, y, z) = x and q23(x, y, z) =
(y, z). We note that q1 ◦ (id×∆) = p1 and q23 ◦ (id×∆) = ∆ ◦ p2. Thus,

p1!(id×∆)∗(F �G) = p1!(id×∆)∗(q∗1F ⊗ q∗23G) = p1!(p
∗
1F ⊗ p∗2∆∗G)

= F ⊗ (p1!p
∗
2∆∗G) = F ⊗ (p∗p!∆

∗G) = F ⊗V (p!∆
∗G).

Note that we use the compatibility properties (1) and (2) in Proposition 3.1.8 and the base
change Proposition 3.1.7 for the six-functors in this computation.

Remark 3.6.2. A similar computation will imply that η ⊗ id can be identify with

ι∗Λ×−Λ×Λ(1∆ � •) : ShΛ(M)→ ShΛ×−Λ×Λ(M ×M ×M).

Now we check the triangle equality (idShΛ(M)⊗ε) ◦ (η ⊗ idShΛ(M)) = idShΛ(M). In other
words, we check that the composition of the following functors

ShΛ(M) ShΛ×−Λ(M ×M)⊗ ShΛ(M)

ShΛ×−Λ×Λ(M ×M ×M) ShΛ(M)

(ι∗Λ×−Λ∆∗p
∗)⊗ id

p1!(id×∆)∗
�

is the identity. The other triangle equality can be checked symmetrically.

Proposition 3.6.3. The above equality holds.

Proof. Let F ∈ ShΛ(M). The composition of the first two arrows sends (1V , F ) to(
� ◦ (ι∗Λ×−Λ∆∗p

∗)⊗ id
)

(1V , F ) = (ι∗Λ×−Λ∆∗1M)� F.

Apply p1!(id×∆)∗ and we obtain

p1!(id×∆)∗
(
(ι∗Λ×−Λ∆∗1M)� F

)
= p1!

(
(ι∗Λ×−Λ∆∗1M)⊗ p∗2F

)
.

35



To see that p1!

(
(ι∗Λ×−Λ∆∗1M)⊗ p∗2F

)
= F , we use the Yoneda lemma to evaluate at Hom(−, H)

for H ∈ ShΛ(M) and compute that

Hom(p1!

(
(ι∗Λ×−Λ∆∗1M)⊗ p∗2F

)
, H) = Hom

(
ι∗Λ×−Λ∆∗1M ,Hom(p∗2F, p

!
1H)

)
= Hom

(
∆∗1M ,Hom(p∗2F, p

!
1H)

)
= Hom

(
1M ,∆

! Hom(p∗2F, p
!
1H)

)
= Hom (1M ,Hom(F,H)) = Hom(F,H).

For the first equality, we use (3) and (6) of Proposition 3.2.11 to obtain SS(p∗2F ) = 0M×SS(F )
and SS(p!

1H) = SS(H)× 0M , and they further imply the microsupport estimation

SS(Hom(p∗2F, p
!
1H)) ⊆ (SS(H)× 0M) + (0M ×− SS(F ))

since (0M × SS(F )) ∩ (SS(H)× 0M) ⊆ 0M×M and Hom(p∗2F, p
!
1H) ∈ Sh−Λ×Λ(M). We use

(4) of Proposition 3.1.8 to obtain the second to last equality.

Because duals are unique, there is an equivalence Sh−Λ(M) = ShΛ(M)∨ and we denote
by DΛ : Sh−Λ(M)c

∼−→ ShΛ(M)c,op the induced equivalence on wrapped sheaves associated to
the pair (M,Λ). Thus, there is a commutative diagram given by the counits:

Sh−Λ×Λ(M ×M) V

Sh−Λ(M)⊗ ShΛ(M)

ShΛ(M)∨ ⊗ ShΛ(M) V

p!∆
∗

Hom(−,−)

Ind(DΛ)⊗ id

Here we abuse the notation and use Hom(−,−) to denote the functor induced by its Ind-
completion. In particular, for G ∈ Sh−Λ(M)c and F ∈ ShΛ(M), there is an identification

Hom(DΛG,F ) = p!(G⊗ F ).

A consequence of this identification is that colimit-preserving functors are given by integral
transforms, i.e., Theorem 1.0.3 discussed in the introduction. We mention the following
proof is adapted from [7] where they study a similar statement in the setting of algebraic
geometry.

Proof of Theorem 1.0.3. The identification is a composition

Sh−Λ×Σ(M ×N) = Sh−Λ(M)⊗ ShΣ(N) = ShΛ(M)∨ ⊗ ShΣ(N) = FunL(ShΛ(M), ShΣ(N)).

The effect of the first equivalence identifies F�G with (F,G) for F ∈ Sh−Λ(M)c, G ∈ ShΣ(N)
and these objects generate the corresponding category by Lemma 2.3.1 so it is sufficient to
identify them. For F ∈ Sh−Λ(M)c and any G ∈ ShΣ(N), the pair (F,G) is first sent to
(DΛF,G) and then the functor (coY(DΛF ))⊗V G where we use coY to denote the co-Yoneda
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embedding. For this computation we use pM : M ×N →M to denote the projection to the
M -component, aM : M → {∗} the projection to a point, and similarly to N . We evaluate
the functor at H and compute again by base change, Proposition 3.1.7, and Proposition
3.1.8 that

((coY(DΛF ))⊗V G) (H) = (aN
∗Hom(DΛF,H))⊗G

= (aN
∗aM !(F ⊗H))⊗G

= (pN !pM
∗(F ⊗H))⊗G

= pN ! (pM
∗(F ⊗H)⊗ p∗NG)

= pN ! ((F �G)⊗ p∗MH) = (F �G) ◦H.

Note we use the fact that DΛF is the object corepresenting (G 7→ aM !(F ⊗G)).
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Chapter 4

Isotopies of sheaves

Let (X,ω, Z) be a Liouville manifold and α := ιZω be the Liouville form. Consider an
isotopy of Lagrangian submanifolds conic at infinity Lt, t ∈ [0, 1]. One says that the isotopy
Lt is positive if α(∂t∂∞Lt) ≥ 0. Standard Floer theory implies that there is a contin-
uation element c(Lt) ∈ HF∗(L0, L1) if L0 and L1 intersect transversally. For any triple
(K0, K1, K2) of transversally intersected Lagrangians, there exists also a multiplication map
µ : HF∗(K0, K1) ⊗ HF∗(K1, K2) → HF∗(K0, K2). Thus, for suitable K’s, multiplying c(Lt)
induces a map HF∗(L1, K)→ HF∗(L0, K) which is usually referred as the continuation map
and is one key ingredient for defining the wrapped Floer category. See for example [20,
Section 3.3] for details.

4.1 Continuation maps

We recall here the sheaf-theoretical continuation maps studied in [26]. A dual construction
can be found in [53] and [27]. In the sheaf-theoretical setting, objects correspond to the
continuation elements are simply morphisms/maps between sheaves. Thus, we simply use
the term continuation maps to refer both the morphisms between sheaves and the induced
maps on the Hom’s. We denote by (t, τ) the coordinate of T ∗R and by T ∗≤R = {τ ≤ 0} the
set of non-positive covectors.

Lemma 4.1.1. Let M be a manifold, [−∞,∞] be the compactification of R at the two
infinities, p : M × R → M be the projection, j : M × R ↪→ M × [−∞,∞] be the open
interior, and i± : M×{±∞} ↪→M×[−∞,∞] be the closed inclusion at the positive/negative
infinity. Then for a sheaf F ∈ ShT ∗M×T ∗≤R(M × R), there are isomorphisms p∗F = i∗−j∗F

and p!F [1] = i∗+j∗F identifying the two pushforwards as nearby cycles at the infinities.

Proof. We first prove the case when supp(F ) ⊆M× [−C,C] for some C ∈ R>0. In this case,
i∗−j∗F = i∗+j∗F = 0 and p∗F = p!F since p is proper on supp(F ). Let x ∈ M be a point.
Base change implies that (p∗F )x = Γ({x}×R;F |{x}×R). Apply the microsupport estimation
SS(f ∗F ) ⊆ f#(SS(F )) from (2) of Proposition 3.2.13 to the inclusion of the slice at x, and
we obtain SS(F |{x}×R) ⊆ T ∗≤R so we reduce to the case M = {∗}. In this case, consider the
family of open sets {(−∞, t)}t∈R. The noncharacteristic deformation lemma, Lemma 3.1.13,
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implies that Γ(R;F )
∼−→ Γ((−∞, t);F ) for all t ∈ R. Since supp(F ) is compact, the latter

vanishes for t << 0.
Now for the general case, we first notice there are canonical morphisms p∗F → i∗−j∗F

and i∗+j∗F → p!F [1] functorial on F : Let j− : M × R ↪→ M × [−∞,∞) denote the open
embedding compactifying the negative end. For any G ∈ Sh(M × [−∞,∞)), there is a fiber
sequence

j−!j
∗
−G→ G→ i−!i

∗
−G.

Set G = j−∗F and recall that j∗−j−∗ = id, we obtain the fiber sequence

j−!F → j−∗F → i−!i
∗
−j−∗F.

Let p− : M × [−∞,∞) → M denote the projection (and similarly for p+). The canonical
morphism p∗F → i∗−j∗F is obtained by applying p−∗ to the above fiber sequence. The
morphism i∗+j∗F → p!F [1] can be obtained similarly.

Recall that there is fiber sequence

FM×(−∞,0] → F → FM×(0,∞).

(5) of Proposition 3.2.11 implies that both FM×(−∞,0] and FM×(0,∞) are contained in T ∗M ×
T ∗≤R. So it is sufficient to prove the cases when supp(F ) ⊆M×(−∞, C] and when supp(F ) ⊆
M × [−C,∞) for some C ∈ R>0.

We first prove the cases in which the objects vanish: Assume supp(F ) ⊆ [−C,∞). We
claim p∗F = 0 = i∗−j∗F . One computes

p∗F = p∗F[−C,∞) = p∗ lim
n→∞

F[−C,n] = lim
n→∞

p∗F[−C,n] = 0

by the case when supp(F ) ⊆ M × [−C,C] for some C ∈ R. Similarly, by considering the
colimit

F(−∞,C] = colim
n→∞

F(−n,C],

one conclude p!F = 0 = i∗+j∗F when supp(F ) ⊆ (−∞, C].
Now assume supp(F ) ⊆ (−∞, C] and we claim p∗F = i∗−j∗F . Consider again the fiber

sequence
j−!F → j−∗F → i−!i

∗
−j−∗F.

Apply p−∗ and notice that p−! = p−∗ for these sheaves because of the compact support
assumption. Thus, we obtain the fiber sequence

p!F → p∗F → i∗−j−∗F.

Since p!F = 0 by the previous case, p∗F = i∗−j−∗F . The other isomorphism can be obtained
similarly.

To define the continuation map, we need a prototype version of Theorem 1.0.4. For the
rest of the section, we use I to denote an open interval and (t, τ) to denote the coordinate
of its cotangent bundle T ∗I.
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Proposition 4.1.2 ([26, Proposition 4.8]). Let ι∗ : ShT ∗M×T ∗≤I(M × I) ↪→ Sh(M × I) denote

the tautological inclusion. Then there exist left and right adjoints ι∗ a ι∗ a ι! which is given
by convolutions ι∗F = 1{t′>t}[1] ◦ F and ι!F = Hom◦(1{t′>t}[1], F ). Here we denote by (t, t′)
the coordinate of I2.

Proof. Assume for simplicity I = (0, 1). We first show that SS(1{t′>t} ◦ F ) ⊆ T ∗M × T ∗≤I.
Let π1, π2 : M × I × I → M × I denote the projection π1(x, t, t′) = (x, t) and π2(x, t, t′) =
(x, t′). Then 1{t′>t} ◦ F = π2![(π

∗
1F )M×{t′>t}]. In order to estimate the effect of π2! on

the microsupport, we need the map π2 to be proper on the support of the sheaf. Thus,
let j : M × I × I ↪→ M × (−1, 1) × I denote the open inclusion extending I ↪→ (−1, 1),
π′2 : M×(−1, 1)×I →M×I denote the projection to the first and the third components, and
factorize 1{t′>t} ◦F to π′2∗j![(π

∗
1F )M×{t′>t}]. Before taking π′2∗, one observes that, by (4) and

(5) of Proposition 3.2.11 and (1) of Proposition 3.2.13, none of the operations introduces
non-zero covectors on the second I-component to the microsupport except when taking
(−)M×{t′>t}, covectors of the form (0, σ,−σ) for σ ∈ R>0 might be added to the cotangent
fibers over the boundary {t′ = t}. Thus

SS(1{t′>t} ◦ F ) = SS(π′2∗j![(π
∗
1F )M×{t′>t}])

⊆ (π′2)π
(
SS(j![(π

∗
1F )M×{t′>t}]) ∩ T ∗M × 0(−1,1) × T ∗I

)
⊆ T ∗M × T ∗≤I.

For the right adjoint ι!, we note that

lim
r→∞

(1{t−r≤t′≤t} ◦ F ) = lim
r→∞

π2![(π
∗
1F )M×{t−r≤t′≤t}]

= lim
r→∞

π2∗[(π
∗
1F )M×{t−r≤t′≤t}]

= π2∗ lim
r→∞

[(π∗1F )M×{t−r≤t′≤t}]

= π2∗[(π
∗
1F )M×{t′≤t}].

Thus one can argue as the left adjoint case. (Note the last term is different from 1{t′≤t} ◦ F
in general since limits do not commute with convolution.)

In sum, we’ve shown that there are functors

1{t′>t}[1] ◦ (−), lim
r→∞

(
1{t−r≤t′≤t} ◦ (−)

)
: Sh(M × I)→ ShT ∗M×T ∗≤I(M × I).

In order to show that these are indeed the desired adjoints, it is sufficient to show, for exam-
ple, that the canonical morphism 1∆I

→ 1{t′>t}[1] becomes an isomorphism after convoluting
with sheaves in ShT ∗M×T ∗≤I(M × I). Recall that convoluting with 1∆I

is the same as the
identity functor.

Consider the fiber sequence

1{t′>t} → 1{t′≥t} → 1∆I
.

We have similarly 1{t′≥t} ◦ F = π2!(π
∗
1F )M×{t′≥t} and a similar microsupport estimation

implies that, before applying π2!, SS
(
(π∗1F )M×{t′≥t}

)
⊆ T ∗M × T ∗≤I × T ∗I. Thus, the last
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lemma 4.1.1 implies π2![(π
∗
1F )M×{t′≥t}] is the nearby circle of (π∗1F )M×{t′≥t} at ∞ along the

first I-direction and it is 0. Thus F = 1∆I
◦ F ∼−→ 1{t′>t}[1] ◦ F . A similar argument shows

lim
r→∞

(1{t−r≤t′≤t} ◦ F )
∼−→ F for F with the same microsupport condition.

Finally, we notice that 1{t−r≤t′≤t} ◦ (−) is the inverse of 1{t+r>t′>t}[1] ◦ (−). Thus the
functor 1{t−r≤t′≤t} ◦ (−) is equivalent to Hom◦(1{t+r>t′>t}[1],−) and

lim
r→∞

(1{t−r≤t′≤t} ◦ F ) = lim
r→∞

Hom◦(1{t+r>t′>t}[1], F )

= Hom◦(colim
r→∞

1{t+r>t′>t}[1], F ) = Hom◦(1{t′>t}[1], F ).

Now let F ∈ ShT ∗M×T ∗≤I(M × I) and, by the preceding lemma, F
∼−→ 1{t′>t}[1] ◦I F . Let

a ∈ I and let ia : M ↪→ M × I denote the slice at a. Applying i∗a results the isomorphism
i∗aF

∼−→ 1(−∞,a)[1] ◦I F . Recall that for a ≤ b, there is a canonical morphism 1(−∞,a)[1] →
1(−∞,b)[1] induced by the open inclusion (−∞, a) ↪→ (−∞, b).

Definition 4.1.3. For F ∈ ShT ∗M×T ∗≤I(M × I) and a ≤ b Set Fx = i∗xF for x ∈ I. We define

the continuation map c(F, a, b) : Fa → Fb to be the (homotopically unique) morphism c that
makes the following diagram commute:

Fa Fb

1(−∞,a)[1] ◦ F 1(−∞,b)[1] ◦ F

c

The continuation maps inherit various properties from 1(−∞,a). For example, they com-
pose in the sense that

c(F, a2, a3) ◦ c(F, a1, a2) = c(F, a1, a3)

since the conical map 1(−∞,a1) → 1(−∞,a2) → 1(−∞,a3) compose to 1(−∞,a1) → 1(−∞,a3). Let
p[a,b] : N × [a, b] → N denote the projection. If F |N×[a,b] = p∗[a,b]G is a pullback from N for

some G ∈ Sh(N), one can identify Fa = G = Fb through the canonical map F → ia∗i
∗
aF . In

this case, the continuation map c(F, a, b) is equivalent to this identification Fa = Fb. Note
because convolution ◦ is compatible with colimits, we have the following corollary.

Corollary 4.1.4. For F ∈ ShT ∗N×T ∗≤I(N × I), the canonical map colim
r<t

Fr → Ft is an

isomorphism.

The dual statement for limits is false in general.

Example 4.1.5. Let N = {∗} and take F = 1(−∞,0]. Then Ft = 1V when t ≤ 0 and 0
otherwise. Thus F0 = colim

r<0
Fr but F0 6= lim

s>0
Fs.

However, we will consider the noncharacteristic situation.
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Definition 4.1.6 ([43]). Let B be a manifold. For F ∈ Sh(M × B), we say that F is
B-noncharacteristic if the inclusion ib : M ×{b} ↪→M ×B is noncharacteristic for F for all
b ∈ B. Equivalently, F is B-noncharacteristic if SS(F ) ∩ (0M × T ∗B) ⊆ 0M×B.

Lemma 4.1.7. Let F ∈ Sh(M × I) be I-noncharacteristic. Then,

1. The natural morphism i∗tF [−1]→ i!tF is an isomorphism for t ∈ I.

2. If G ∈ Sh(M × I) such that Hom(G,F ) is I-noncharacteristic, then i∗t Hom(G,F ) =
Hom(i∗tG, i

∗
tF ).

3. Denote by q : M × I → I the projection. If q is proper on F , then q∗F is a constant
sheaf. Moreover, if F ∈ ShT ∗M×T ∗≤I(M × I), the continuation maps of F are sent to
isomorphisms under q∗.

Proof. For (i), the equivalence i∗tF [1] = i!tF follows directly from (4) of Proposition 3.2.11
and the observation that since q ◦ it = id, one has i!t1M×I = i!t ◦ q!1M [1] = 1M [1].

For (ii), apply (i) and use the fact that i!tHom(G,F )[−1] = Hom(i∗tG, i
!
tF )[−1].

For (iii), (3) of Proposition 3.2.11 implies that SS(q∗F ) ⊆ qτ (SS(F ) ∩ 0M × T ∗I) ⊆ 0I
so q∗F is a constant sheaf by Example 3.2.4 and the fact that R is contractible. For the
statement of continuation maps, recall that they are given by 1(−∞,s) ◦ F → 1(−∞,t) ◦ F for
s ≤ t. Since q∗F = q!F , they are sent to Γc((−∞, s); q∗F ) → Γc((−∞, t); q∗F ) by q∗ which
are isomorphisms.

Corollary 4.1.8. Let F ∈ ShT ∗N×T ∗≤I(N×I). If F is I-noncharacteristic, then the canonical
map Ft → lim

s>t
Fs is an isomorphism.

Proof. We will use qij to denote the projection from N × I × I to the corresponding com-
ponents and pi the projection from N × I. By the above Lemma 4.1.7, Ft = i!tF [1]. Apply
Proposition 4.1.2 and compute by base change and (4) of Proposition 3.1.8, we see that

Ft = i!tF [1] = i!tHom◦(1{s′>s}[1], F )[1] = i!tq12∗Hom(1N×{s′>s}, q
!
13F )

= p1∗(it × idI)
! Hom(1N×{s′>s}, q

!
13F ) = p1∗Hom(1N×(t,∞), F ).

That is, for t ≤ s, the continuation map also corresponds to the map

p1∗Hom(1N×(t,∞)[1], F )→ p1∗Hom(1N×(s,∞)[1], F )

and, since ∗-push commutes with limits and Hom(−, F ) turns limits to colimits, we have

lim
s>t

Fs = lim
s>t

p1∗Hom(1N×(s,∞)[1], F ) = p1∗Hom(1N×(t,∞)[1], F ) = Ft.

We conclude this section with a homotopical invariant property of the continuation map
in the following setting. Let I and J be open intervals and let (t, τ) and (s, σ) be the
corresponding coordinates of their cotangent bundles. Let G ∈ Sh(M × I × J) be a sheaf
such that SS(G) ⊆ {τ ≤ 0}. For any x ∈ I, we use Gt=x := G|M×{x}×J to denote the
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restriction and similarly for Gs=y, y ∈ J . Note by (2) of Proposition 3.2.13, the same
condition SS(Gs=y) ⊆ {τ ≤ 0} holds. Assume further that there exists a ≤ b in I such
that SS(Gt=a), SS(Gt=b) ⊆ T ∗M × 0J . By Lemma 4.2.12, this implies that there exist Fa,
Fb ∈ Sh(M) such that Gt=a = p∗sFa and Gt=b = p∗sFb where we use ps : M × J → M to
denote the projection. Note that, for each y ∈ J , the restriction Gs=y induces a continuation
map c(G, y, a, b) : Fa → Fb.

Fa Fb

c(G, y, a, b)

c(G, y′, a, b)

t = a t = b

s = y′

s = y

Proposition 4.1.9. The morphism c(G, y, a, b) is independent of y ∈ J .

Proof. Since SS(G) ⊆ {τ ≤ 0}, a family version of Proposition 4.1.2 implies

G = 1∆I×J ◦ |JG
∼−→ 1{s′>s}×J [1] ◦ |JG

is an isomorphism where ◦|J is the J-parametrized convolution. In particular, there is an
isomorphism Gt=a

∼−→ 1(−∞,a)×J [1] ◦ |JG and thus a (J-parametrized) continuation map

cJ(G, a, b) : Gt=a → Gt=b.

For y ∈ J , let iy : M → M × J denote the inclusion of the slice at y. By Proposition
3.1.8, there is equivalence i∗y(K ◦ |JG) = K|s=y ◦ Gs=y for K ∈ Sh(I × J). This implies
that cJ(G, a, b) restricts to i∗ycJ(G, a, b) = c(Gs=y, a, b) =: c(G, y, a, b). Hence, the iy

∗ a iy∗
adjunction induces a commuting diagram,

Gt=a Gt=b

iy∗iy
∗Gt=a iy∗iy

∗Gt=b

cJ(G, a, b)

iy∗c(G, y, a, b)

which is equivalent to

p∗sFa p∗sFb

iy∗Fa iy∗Fb

cJ(G, a, b)

iy∗c(G, y, a, b)

.
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Since J is contractible, the horizontal arrows become isomorphism after applying ps∗.

Fa Fb

Fa Fb

ps∗cJ(G, a, b)

c(G, y, a, b)

.

That is, the continuation map c(G, y, a, b) is equivalent to ps∗cJ(G, a, b) for all y ∈ J .

Remark 4.1.10. One can see from the proof that the continuation maps enjoy higher homo-
topical independence.

4.2 Sheaf-theoretical wrappings

We specialize to the cases of I-family sheaf which come from the Guillermou-Kashiwara-
Schapira sheaf quantization in this section. Recall that when M is a smooth manifold, its
cotangent bundle admits a canonical symplectic structure (T ∗M,dα). The Liouville form α is
compatible with the R>0-action which freely acts on Ṫ ∗M . Thus, there is an induced contact
structure on the cosphere bundle S∗M . It can be realized as a contact hypersurface of Ṫ ∗M
by picking a Riemannian metric. There is a dictionary between homogeneous symplectic
geometry of Ṫ ∗M and contact geometry of S∗M . Thus, we will use them interchangeably
when one language is more convenient. See subsection 2.1 of the Preliminary for a more
detail discussion.

Definition 4.2.1. Let M , B be a manifolds and I be an open interval containing 0. We
say a C∞ map Φ : S∗M × I × B → S∗M is a B-family of contact isotopies if for each
(t, b) ∈ I × B, the map ϕt,b := Φ(−, t, b) is a contactomorphism and ϕ0,b = idS∗M for all
b ∈ B.

As remarked above, a B-family of contact isotopies Φ corresponds to a B-family of
homogeneous symplectic isotopies (of degree 1), which we abuse the notation and denote it
by Φ as well. For fixed b ∈ B, we let VΦb denote the vector field generated by ϕt,b. Since ϕt,b
is homogeneous, VΦb is a Hamiltonian vector field with α(VΦb) being its Hamiltonian. The
latter is the function which evaluates to αϕt,b(x,ξ)(

∂
∂t
ϕ(t,b)(x, ξ)) at ϕt,b(x, ξ).

Proposition 4.2.2. For each B-family of homogeneous symplectic isotopies Φ, there is a
unique conic Lagrangian submanifold ΛΦ in Ṫ ∗(M ×M)× T ∗I × T ∗B which is determined
by the equation T ∗t,b(I ×B) ◦ΛΦ = Λϕt,b where the later is {(x,−ξ, φt,b(x, ξ)) |(x, ξ) ∈ Ṫ ∗M},
the twisted graph of ϕt,b. More precisely, it is given by the formula

ΛΦ =
{(
x,−ξ, ϕt,b(x, ξ), t,−α(VΦb)(ϕt,b(x, ξ)), b,−αϕt,b(x,ξ) ◦ d(Φ ◦ ix,ξ,t)b(·)

)}
(4.1)

where the parameters run through (x, ξ) ∈ Ṫ ∗M , t ∈ I, b ∈ B, and the map ix,ξ,t is the
inclusion of B as the (x, ξ, t)-slice. We use the same notation ΛΦ to denote its projection to
S∗(M ×M × I ×B) which is a Legendrian submanifold.
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The following theorem of Guillermou, Kashiwara, and Schapira is a categorification of the
more classical statements of quantization which usually have operators as the quantized ob-
jects. The proof given there is the non-family case. Since the (global) existence is proved by
using the uniqueness property to glue local existence and the local picture depends smoothly
on the family Jn, the same proof holds for the family version with minor modification [26,
Remark 3.9.].

Theorem 4.2.3 ([26, Proposition 3.2]). Let M be a manifold. For a Jn-family contact
isotopies Φ : S∗M × I × Jn → S∗M where J is an open interval, there exists a unique sheaf
kernel K(Φ) ∈ Sh(M ×M × I × Jn) such that SS∞(K(Φ)) ⊆ ΛΦ and K(Φ)|t=0 = 1∆M×Jn.
Moreover, SS∞(K(Φ)) = ΛΦ is simple along ΛΦ, both projections supp(K) → M × I × Jn
are proper, and the composition is compatible with convolution in the sense that

1. K(Ψ ◦ Φ) = K(Ψ) ◦ |I×JnK(Φ),

2. K(Φ−1) ◦ |I×JnK(Φ) = K(Φ) ◦ |I×JnK(Φ−1) = 1∆M×I×Jn.

Here Φ−1 is the Jn-family of isotopies given by Φ−1(−, t, b) := φ−1
t,b .

Remark 4.2.4. The equality SS∞(K(Φ)) = ΛΦ as well as a few other properties of K(Φ)
followed by the uniqueness is explained in [23].

We refer the above process of obtaining the sheaf kernel K(Φ) from a contact isotopy
Φ or a Jn-family of contact isotopies Φ, for n > 1, as the Guillermou-Kashiwara-Schapira
sheaf quantization or GKS sheaf quantization in short.

Example 4.2.5. The construction in [26, Example 3.10, Example 3.11] works more general:
Consider a manifold M and take a Riemannian metric g. Denote by H the homogeneous
Hamiltonian H(x, ξ) :=

√
gx(ξ, ξ), (x, ξ) ∈ Ṫ ∗M and Φ the corresponding positive isotopy.

For small 1− << s < 0, denote by Zs := {(x, y) ∈ M ×M |d(x, y) ≤ |s|} the closed subset
of the pairs of points with distance less than s where d(x, y) is the metric induced on M
by g. Then the slice K(Φ)|s is given by the 1Zs and the continuation map from time-s to
time-0 is given by 1Zs → 1∆. To get the continuation map to the positive time, we note that
Hom(1∆, p

∗
1ωM) = ∆∗∆

!p!
21M = 1∆. Since H(x, ξ) is time-independent, we conclude by the

uniqueness statement that, for small 0 < t << 1, the time-t continuation map is given by
1∆ = Hom(1∆, p

∗
1ωM)→ Hom(1Z−t , p

∗
1ωM) = K(Φ)|t.

A corollary of the GKS sheaf quantization construction is that contact isotopies act on
sheaves and the action is compatible with the microsupport:

Corollary 4.2.6 ([26, (4.4)]). Let Φ : S∗M × I → S∗M be a contact isotopy. Then the
convolution

K(Φ)|t ◦ (−) : Sh(M)→ Sh(M)

F 7→ K(Φ)|t ◦ F

is an equivalence whose inverse is given by K(Φ−1)|t ◦ (−). For a sheaf F ∈ Sh(M), there is
an equality ṠS(K(Φ) ◦ F ) = ΛΦ ◦ ṠS(F ). In particular, if we set Ft := (K(Φ) ◦M F )|M×{t},
then SS∞(Ft) = φt SS∞(F ) for t ∈ I. Furthermore, if F has compact support, then so does
Ft for all t ∈ I.
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We will consider the notion of wrapping for sheaves. Recall that in contact geometry, a
wrapping is usually referring to a one-parameter deformation of Legendrians Lt in a contact
manifold Y . The wrapping is positive (resp. negative) if α(∂tLt) ≥ 0 (resp. α(∂tLt) ≤ 0) for
some compatible contact form α. An exercise is that such a deformation Lt can always be
extended to a contact isotopy Φ on Y . Since deformations of singular isotropics are not yet
available at this moment, we first consider globally defined contact isotopies on S∗M , and
then use them to deform sheaves through GKS sheaf quantization.

Remark 4.2.7. The term wrapping comes from the example on Ṫ ∗(R/Z) with the isotopy
given by

φt(x, ξ) =

{
(x+ t, ξ), ξ > 0,

(x− t, ξ), ξ < 0.

In this paper, we will use the term positive/negative wrapping to mean either a posi-
tive/negative isotopy, a family of sheaves induced by such an isotopy, or the corresponding
family of singular isotropics of those sheaves by taking SS∞(−). Since these two notions are
dual to each other, we will mainly work with positive isotopies and simply refer them as
wrappings when the context is clear.

We will consider the totality of all such wrappings in the next section. For now, we
consider wrapping a single sheaf and develop a perturbation trick which we will use later.
Let Φ : S∗M×I → S∗M be a contact isotopy isotopy and denote its GKS sheaf quantization
by K(Φ). For F ∈ Sh(M), the convolution K(Φ) ◦ F is an object in Sh(M × I), which we
think of it as an isotopy of F and denote it by FΦ for simplicity. By abusing the notation,
we write Ft = i∗t (F

Φ) ∈ Sh(M) where it : M ×{t} ↪→M × I is the slice at t so that F0 = F .
When Φ is positive, the expression of ΛΦ implies that SS(K(Φ)) ⊆ {τ ≤ 0} and there is
continuation map K(Φ)s → K(Φ)t for s ≤ t and it induces continuation maps Fs → Ft for
s ≤ t on F .

Proposition 4.2.8 (Perturbation trick). Let F and G ∈ Sh(M) be sheaves such that
supp(F ) ∩ supp(G) is compact. Let Φ : S∗M × I → S∗M be a positive isotopy such that
ϕt(SS∞(F )) ∩ SS∞(G) = ∅ for t > 0. Then the continuation map F → Ft0 induces an
isomorphism

Hom(G,F )
∼−→ Hom(G,Ft0)

for t0 > 0.

Remark 4.2.9. We note that when G is cohomologically constructible with perfect stalks,
the object Hom(G,Ft0) from the last proposition is the same as Γ(M ;Hom(G, 1M)⊗Ft0) by
(7) of Proposition 3.2.11. This can been seen as a sheaf-theoretic analogue of the procedure
of making Lagrangians intersect transversally and will be used frequently in Chapter 5.

Before we start the proof, we recall some constancy results from general sheaf theory.
Let f : X → Y be a continuous map between locally compact Hausdorff space. Denote by
Shf (X) the subcategory of Sh(X) consists of objects F satisfying the condition F |f−1(y) ∈
Loc(f−1(y)) for all y ∈ Y . We note that f ∗G ∈ Shf (X) for G ∈ Sh(Y ).
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Proposition 4.2.10 ([32, Proposition 2.7.8]). Assume there is an increase sequence of closed
subsets {Xn} such that Xn ⊆ Int(Xn+1), X = ∪nXn, and fn := f |Xn is proper with con-
tractible fibers. Then, the adjunction f∗ : Shf (X) � Sh(Y ) : f ∗ is an equivalence of cate-
gories.

Corollary 4.2.11. Let M , B be manifolds and assume B is contractible. Let p : M×B →M
denote the projection. Then F ∈ Sh(M ×B) is of the form p∗G for some G ∈ Sh(M) if and
only if F |{x}×B is locally constant for all x ∈M . In this case, G = p∗F .

By Example 3.2.4, Corollary 4.2.11, and (2) of Proposition 3.2.13, we conclude:

Lemma 4.2.12. Let B be a contractible manifold and p : M ×B →M be the projection. A
sheaf F ∈ Sh(M) satisfies p∗p∗F

∼−→ F if and only if SS(F ) ⊆ T ∗M × 0B.

Proof of Proposition 4.2.8. We note that the microsupport estimation ṠS(FΦ) ⊆ ΛΦ ◦ ṠS(F )
implies that the sheaf FΦ is I-noncharacteristic. Thus by Corollary 4.1.8, the canonical map
F → lim

t>0
Ft is an isomorphism. Since taking global sections Γ(M ;−) preserves limits, the

continuation map Hom(G,F )
∼−→ Hom(G,Ft0) can be obtained from the composition of

Hom(G,F0) = Hom(G, lim
t>0
Ft) = lim

t>0
Hom(G,Ft)→ Hom(G,Ft0)

where the last morphism is the projection from the limit diagram. We claim that this
diagram is actually a constant diagram after applying Γ(M ;−).

Consider the sheaf Hom(p∗G,FΦ) ∈ Sh(M × I). Apply (7) of Proposition 3.2.11 and the
microsupport estimation

SS(Hom(p∗G,FΦ)) ⊆
(
SS(FΦ) + (− SS(G)× 0I)

)
implies that Hom(p∗G,K(Φ)◦F ) ∈ ShT ∗M×T ∗≤I(M×I) is also I-noncharacteristic. A similar
computation as in Corollary 4.1.8 implies that continuation maps obtained from applying
Hom(G,−) to the continuation maps of F is the same as those associated to Hom(p∗G,FΦ).
Denote by q : M × I → I the projection to I. The assumption that supp(G) ∩ supp(F ) is
compact implies that q is proper on supp

(
Hom(p∗G,FΦ)

)
so we may apply the microsupport

estimation to conclude, by Lemma 4.2.12 above, that q∗Hom(p∗G,FΦ) is a constant sheaf.
Finally, properness and I-noncharacteristic assumptions that(

q∗Hom(p∗G,FΦ)
)
t

= Hom(G,Ft)

which concludes the proof.

4.3 The category of positive wrappings

We will define the category of positive wrappings whose morphisms will be given by concate-
nation. In order to define concatenation easily, we assume that the isotopies are constant near
the end points, and the interval I will be a closed interval for this section. This requirement

47



doesn’t lose much information since for any positive contact isotopy Φ : S∗M×[0, 1]→ S∗M ,
one can always make it have constant ends through a homotopy of positive isotopies. For
example, pick a non-decreasing C∞ function ρ on R such that ρ|(−∞,1/3] ≡ 0 and ρ|[2/3,∞) ≡ 1,

then an example of such a modification is given by Φ̃(x, ξ, t, s) = Φ(x, ξ, (1−s)t+sρ(t)). By
Proposition 4.1.9, they induce equivalent continuation maps and two such identifications can
itself be identified by a similar consideration and so on. Thus, when we mention isotopies
obtained through nature constructions such as by integrating from a time-independent vector
field, we will implicitly assume such a deformation procedure.

Definition 4.3.1. Let I = [t0, t1], J = [s0, s1] be two closed intervals. We use I#J to
denote the concatenated interval (I q J)/{t1 ∼ s0}. For isotopies Φ : S∗M × I → S∗M ,
Ψ : S∗M × J → S∗M , the concatenation isotopies Ψ#Φ : S∗M × (I#J) → S∗M is the
isotopy which is given by

(Ψ#Φ)(x, ξ, t) =

{
Φ(x, ξ, t), t ∈ I,
Ψ(Φ(x, ξ, t1), t), t ∈ I ′.

If I = J , one can also define the pointwise composition Ψ ◦ Φ : S∗M × I → S∗M by

(Ψ ◦ Φ)(x, ξ, t) = Ψ(Φ(x, ξ, t), t)).

Note that, up to a scaling, Ψ ◦ Φ and Ψ#Φ are homotopic to each othert and, if both Φ
and Ψ are positive, they are homotopic through positive isotopies.

Definition 4.3.2. Let Ω ⊆ S∗M be an open subset. We say a contactomorphism ϕ :
S∗M → S∗M is compactly supported on Ω if ϕ equals idS∗M outside a compact set C in Ω.
Similarly, a contact isotopy Φ : S∗M × I → S∗M is compactly supported on Ω if ϕt = id
outside a fixed compact set C in Ω for all t ∈ I.

Definition 4.3.3. We define the category W (Ω) of compactly supported positive wrappings
on Ω as follows: An object of W (Ω) is a pair (ϕ, [Φ]) such that ϕ is a compactly supported
contactomorphism and [Φ] is a homotopy class of compactly supported isotopies, defined
on a closed interval I, having ϕ as its end point and realizing it as Hamiltonian. Note
that the degenerate case I = {∗} is allowed. We will often simply write (ϕ, [Φ]) by Φ
without emphasizing that it is a homotopy class through the paper when it is irrelevant. A
1-morphism Ψ : [Φ0]→ [Φ1] is a positive isotopy Ψ such that [Φ1] = [Ψ#Φ0]. Composition of
1-morphisms is given by concatenation. For Ψ0,Ψ1 : [Φ0]→ [Φ1], a 2-morphism is a positive
family of isotopies Θ : S∗M × I × J → S∗M which is constant near the end points on the
J-direction such that Θ(−, t, si) = Ψi(−, t) and Θ(−, ti, s) = Φi(−), i = 0, 1. Here ti and si
are the end points of I and J . An n-morphism will be a homotopy between n−1 morphisms
with the obvious boundary conditions and similar constancy requirements.

We will later take colimit over the category W (Ω) and we show such colimit is filtered.
Recall that a 1-category C is filtered if,

1. C is non-empty,
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2. for any X, Y ∈ C, there is Z ∈ C with morphisms X → Z and Y → Z, and,

3. for any more morphism f, g : X → Y , there exist h : Y → Z such that h ◦ f = h ◦ g.

This is the same as the condition that for any (ordered) n-simplex K, n ∈ [−1, 1] and any
functor F : K → C, there is an extension F̂ on K. where K. is the n+1 simplex obtained by
adding a final cone point to K. For example, we can realize a pair of morphisms f, g : X → Y
as a hollowed triangle consisting of vertices X,X, Y and edges idX , f, g without the presence
of the face. A final cone point Z provides a morphism h : Y → Z for the edge between Y
and Z. The existence of the three new faces and the fact that the only 2-morphism in a
1-category is the strict equality implies h ◦ f = h ◦ g.

Definition 4.3.4. A category C is filtered if for any simplex K and any functor F : K → C,
there is an extension F̂ : K. → C.

Example 4.3.5. Consider the case when K = S2 is the 2-sphere, or more precisely, when
K = ∆2 is the standard 2-simplex such that the base face has three vertices being a fixed
object X, three edges being idX , and the face being the trivial identification. This is essen-
tially the situation that there are objects X, Y , a 1-morphism f : X → Y , with a non-trivial
2-automorphism T on f . The condition of C being filtered means that there exist g : Y → Z
such that the auto equivalence g ◦ T on g ◦ f is trivial, that is, g ◦ T = idg◦f .

The following proposition is a version of [20, Lemma 3.27].

Proposition 4.3.6. The category W (Ω) is filtered.

Proof. Similarly to the situation in classical algebraic topology, it is sufficient to check the
case when K = Sn, the n-sphere for n ∈ Z≥0.

When n = 0, we are given two homotopy classes of contact isotopies Φ0 and Φ1 with
the same end point ϕ, and the goal is to find another contact isotopy Φ and two positive
contact isotopies Ψ0 and Ψ1 such that [Φ] = [Ψ0#Φ0] = [Ψ1#Φ1]. We first notice that,
up to a rescaling, [Φ−1

0 #Φ0] = [Φ−1
1 #Φ1] = [idS∗M ]. So it is sufficient to modify Φ−1

0 and
Φ−1

1 by composing some Φ′ so that Φ′ ◦ Φ−1
0 and Φ′ ◦ Φ−1

1 are positive. Let H0, H1 denote
their Hamiltonians. Since Φ−1

0 and Φ−1
1 are compactly supported, there exists a compact set

C ⊆ Ω such that H0 and H1 are zero outside C. Pick a positive real number r such that
r > max(|H0|, |H1|), relative compact open sets U , V in S∗M such that C ⊂ U ⊆ U ⊆ V ⊆
Ω, and a bump function ρ such that ρ|U ≡ 1 and ρ ≡ 0 outside V . The contact isotopy Φ′

generated by rρ will satisfy the requirement by the Leibniz rule.
When n > 0, we are given a family of morphism Ψθ : Φ0 → Φ1 parametrized by θ ∈ Sn−1

such that [Φ1] = [Ψθ#Φ0], and we have to show that, by possibly further concatenation, this
family can be made to be null-homotopy through positive isotopies. By precomposing Φ−1

0 ,
we may assume there is an Sn−1-family of positive isotopies Ψθ and a fixed (not necessarily
positive) isotopy Φ, such that, for each θ ∈ Sn−1, there exists a homotopy Σθ : S∗M ×
I × [0, 1] → S∗M connecting Φ to Ψθ. We can extend this map to a Dn-family of isotopy
Σ : S∗M × I × Dn → S∗M by Σ(x, ξ, t, rθ) = Σθ(x, ξ, t, r) where we write elements in Dn

as rθ by r ∈ [0, 1] and θ ∈ Sn−1. Now the same compactness argument as before shows that
there is a positive isotopy Φ′ such that Φ′ ◦ Σ is positive.
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Let F : C → D be a functor. For any diagram p : D → E, the colimits colim
C

(p ◦ F )

and colim
D

F exist if either one exists. Thus, it is well-defined to write the canonical map

colim
C

(p ◦ F )→ colim
D

F .

Definition 4.3.7. A functor F : C → D is cofinal if, for any diagram p : D → E, the
canonical map colim

C
(p ◦ F )→ colim

D
F is an isomorphism.

In the 1-categorical setting, a more classical convention is that a functor is cofinal if and
only if,

1. for any d ∈ D, there exists c ∈ C and a morphism d→ F (c),

2. for any morphism f, g : d→ F (c), there exists h : c→ c′ such that F (h)◦f = F (h)◦g.

An equivalent way of saying it is that the fiber product C×Dd/D is non-empty and connected
for all d ∈ D. Here, d/D is the over category whose objects are morphisms of the form d→ d′

and a morphism h : (f : d→ d′)→ (g : d→ d′′) is given by a morphism h : d′ → d′′ such that
h◦f = g, the fiber product is taken over the canonical projection d/D→ D by (d→ d′) 7→ d′

and F . Recall a 1-category is said to be connected if the associated 1-groupoid (by formally
inverting morphisms) is connected. The equivalence of these definitions is the Quillen’s
theorem A. In the ∞-categorical setting it states:

Theorem 4.3.8 (Quillen’s Theorem A). A functor F : C → D is cofinal if and only if the
fiber product C×D d/D is contractible for any d ∈ D.

Now consider the following construction: For n = 1, 2, · · · , take a family of open set Ωn ⊆
S∗M such that Ωn ⊆ Ωn ⊆ Ωn+1, ∪n∈Z≥0 Ωn = S∗M , and Ωn ⊆ S∗M is relative compact.
For n > 0, pick bump function ρn such that ρn ≤ ρn+1, ρn|Ωn ≡ n, and vanishes outside Ωn+1.
Let Φn : S∗M × [0, n]→ S∗M be the isotopy generated by ρn. Since ρ1 ≤ ρ2 ≤ · · · ρn ≤ · · · ,
there exists positive isotopy Ψn : S∗M × [n, n + 1] → S∗M such that the Φn’s and Ψn’s

form a sequence id
Ψ0−→ Φ1

Ψ1−→ · · · in W (Ω). That is, the above data organizes to a functor
Φ : Z≥0 → W (Ω).

Lemma 4.3.9. The functor Φ : Z≥0 → W (Ω) is cofinal.

Proof. By Quillen’s Theorem A, we need to show that Z≥0×W (Ω) (Φ/W (Ω)) is contractible.
Let Φ ∈ W (Ω) and let H denote its Hamiltonian. Since Φ is compactly supported there exist
a compact set C ⊆ S∗M such that H vanishes outside C. Pick n large such that C ⊆ Ωn and
max(H) ≤ n. Then the factorization Φn = (Φn◦Φ−1)◦Φ provides an morphism Φ→ Φn since
composition is homotopic to concatenation. Thus, the fiber product Z≥0 ×W (Ω) (Φ/W (Ω))
is equivalent to {n ∈ Z≥0|ρn ≥ H}. Since ρn+1 ≥ ρn by our construction, the latter is
equivalent to the poset of integers larger than min{n : ρn ≥ H} and is contractible.

Now we quantize the above construction. For (ϕ, [Φ]) ∈ W (Ω) where Φ is defined on
M× [t0, t1], set w(Φ) := K(Φ)|t=t1 to be the restriction of the GKS sheaf quantization K(Φi)
at the end point. We note that since we require the end point ϕ to be fixed, the sheaf
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w(Φ) ∈ Sh(M ×M) depends only on the homotopy class [Φ] by formula 4.1 and Lemma
4.2.12. For a morphism Ψ : Φ0 → Φ1, since Ψ is positive, formula 4.1 again implies there
is a continuation map c(Ψ) : w(Φ0) → w(Φ1). Similarly, for a pair of morphisms Ψ0,Ψ1 :
Φ0 → Φ1, if there is a homotopy Θ between Ψ0 and Ψ1, Proposition 4.1.9 implies that K(Θ)
provides an identification between the continuation maps c(Ψ0), c(Ψ1) : w(Φ0)→ w(Φ1).

Definition 4.3.10. Organizing the above construction, we obtain a functor w : W (Ω) →
Sh(M × M) sending an object Φ to the corresponding sheaf kernel w(Φ), a 1-morphism
Ψ : Φ0 → Φ1 to the continuation map c(Ψ) : w(Φ1) → w(Φ0) , and higher morphisms to
higher equivalences of continuation maps. We will refer this functor as the wrapping kernel
functor.

For a sheaf F ∈ Sh(M) and a contact isotopy Φ : S∗M × [0, 1]→ S∗M , convoluting with
K(Φ) produces a sheaf K(Φ)◦F on Sh(M× [0, 1]) and we use the notation Ft = (K(Φ)◦F )|t
for t ∈ [0, 1] as before. Base change 3.1.7 and compatibility of six-functor formalism 3.1.8
implies that there is an identification

(K(Φ) ◦ F )|t=1 = K(Φ)|t=1 ◦ F = w(Φ) ◦ F

functorial on Φ and F . When Ψ : Φ0 → Φ1 is a positive family of isotopies, we use c(Ψ, F ) :
w(Φ0) ◦ F → w(Φ1) ◦ F to denote the induced continuation map. To simplify the notation,
we sometimes use Fw(Φ) to denote w(Φ) ◦ F . When there is no need to specify the isotopy,
we simply write it as Fw. Similarly, when Ψ is unspecified, we simply write c : Fw → Fw′

for the continuation map. We prove a locality property which we will use later.

Proposition 4.3.11. Let Φ0, Φ1 : S∗M × I → S∗M be contact isotopies. If Φ0 = Φ1 for on
SS∞(F )× I, then w(Φ0) ◦F = w(Φ1) ◦F . Similarly, let Ψ0,Ψ1 be positive contact isotopies.
If Ψ0 = Ψ1 on an open neighborhood Ω0 of SS∞(F ), then c(Ψ0, F ) = c(Ψ1, F ).

Proof. We abuse the notation and use Φi to denote the corresponding homogeneous sym-
plectic isotopies. By convoluting with Φ−1

1 , it is enough to assume Φ1 = idS∗M and show
that Fw(Φ0) = F . We have SS(K(Φ0) ◦ F ) ⊆ SS(K(Φ0)) ◦ SS(F ) ⊆ SS(F ) × 0I . Hence by
Proposition 4.2.12, Ft is constant along constant on t.

Similarly, let Hi ≥ 0 denote the Hamiltonian of Ψi, i = 0, 1. Let Ψs be the homotopy of
isotopies between Ψ0 and Ψ1 generated by the Hamiltonian Ĥ(x, ξ, t, s) = (1−s)H0(x, ξ, t)+
sH1(x, ξ, t). Since Ψ0 = Ψ1 on Ω0, Ψs|Ω0 is constant on s. Thus Proposition 4.1.9 applies to
K(Ψs) ◦ F and we conclude c(Ψ0, F ) = c(Ψ1, F ).

The above construction defines a functor from Sh(M) to [W (Ω), Sh(M)] since the expres-
sion w(Φ) ◦ F is functorial on F . Further composing with the functor of taking limits and
colimits defines functors W±(Ω) : Sh(M)→ Sh(M). Since the subcategory of W (Ω) consists
of objects (ϕ, [Φ]) such that there exists a positive isotopy Φ representing [Φ] is cofinal, we
can informally write the formula by

W+(Ω)F = colim
F→Fw

Fw, W−(Ω)G = lim
Gw−→G

Gw− .

With this definition, we can generalize Proposition 4.1.2 to Theorem 1.0.4.
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Proof of Theorem 1.0.4. Set Ω = S∗M \X and let F ∈ Sh(M). We first show that for any
(x, ξ) ∈ Ω, (x, ξ) 6∈ SS∞(W±(F )), i.e., for any function f defined near x such that f(x) = 0
and dfx ∈ R>0ξ, the restriction map (W±(F ))x → Γ{f<0}(W

±(F ))x is an isomorphism. Since
the situation is local and dfx 6= 0, by changing a coordinate, we may assume f = x1 the
first coordinate function near x = 0. Pick a family of open balls Ui centered at x such that
Ui ⊇ Ui+1 ⊇ Ui+1 and ∩iUi = {x}. The stalk Γ{f<0} (W±(F ))x can be computed by the
colimit colim

i
Γ (Ui ∩ {x1 < 0};W±(F )).

We first prove the negative case. For each i, we take a small positive wrapping Φi

supported in Ω such that w(Φi) ◦ 1Ui∩{x1<0} = 1Ũi with 0 ∈ Ũi and Ũi shrinks to x as i→∞.
For example, take Ui × Ci in Ω containing (x, ξ) where {Ci} is a family of small balls on
the fiber direction with a condition similar to the {Ui}. For each i, pick a bump function
ρi on S∗M supported on Ui × Ci and equals 1 near (x, ξ). Take Hi to be the Hamiltonian
associated to the Reeb flow with shrinking speed and modify it to ρiHi. Finally, take Φi to
be the isotopy associated to ρiHi.

We compute,

Γ
(
Ui ∩ {x1 < 0};W−(F )

)
= lim

W (Ω)
Hom

(
1Ui∩{x1<0}, w(Φ) ◦ F

)
= lim

W (Ω)
Hom

(
w(Φi) ◦ 1Ui∩{x1<0}, w(Φi) ◦ w(Φ) ◦ F

)
= lim

W (Ω)
Hom

(
1Ũi , w(Φi ◦ |IΦ) ◦ F

)
= Γ

(
Ũi;W

−(F )
)
.

Here we use the fact that w(Φi)◦ is an equivalence for the second equation. For the last
equation, we use the fact that negative wrappings of the form Φi ◦Φ is initial in W (Ω). Take
i→∞ and we conclude (W−(F ))x

∼−→ Γ{f<0}(W
−(F ))x and Γ{f≥0}(W

−(F ))x = 0.

Now we turn to the positive case. We take the same family of Ui, Φi and Ũi, and compute,

Γ
(
Ui ∩ {x1 < 0};W+(F )

)
= Hom

(
1Ui∩{x1<0}, colim

W (Ω)
(w(Φ) ◦ F )

)
= Hom

(
w(Φi) ◦ 1Ui∩{x1<0}, w(Φi) ◦ (colim

W (Ω)
w(Φ) ◦ F )

)
= Hom

(
1Ũi∩{x1<0}, colim

W (Ω)
(w(Φi ◦ |IΦ) ◦ F )

)
= Γ

(
Ũi;W

+(F )
)
.

We use the fact that w(Φi)◦ is a left adjoint so it commutes with colimits for the third
equation. Take i→∞ and we get (W+(F ))x

∼−→ Γ{f<0}(W
+(F ))x and Γ{f≥0}(W

+(F ))x = 0.
From the above computation, we see that W±(Ω) : Sh(M) → Sh(M) factorizes to

ShX(M). Finally, we show that W+(Ω) a ι∗ aW−(Ω). Take G ∈ ShX(M) and F ∈ Sh(M).
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We compute,

Hom
(
G,W−(F )

)
= Hom

(
G, lim

W (Ω)
w(Φ) ◦ F

)
= lim

W (Ω)
Hom (G,w(Φ) ◦ F )

= lim
W (Ω)

Hom
(
w(Φ−1) ◦G,F

)
= lim

W (Ω)
Hom (G,F ) = Hom (ι∗G,F ) .

The second to last equality is implied by Proposition 4.3.11 since Φ is compactly supported
away from Λ ⊇ SS∞(G). A similar computation shows that

Hom
(
W+(F ), G

)
= Hom (F, ι∗G) .

Remark 4.3.12. We mention that, aside from the prototype cases [53, 26, 27] mentioned in
the introduction, special cases for such geometric descriptions can be found in, for example,
[33] in the setting of toric homological mirror symmetry which are defined by using the group
structure of the torus and are crucial for matching the data with the coherent side.

Notation 4.3.13. Recall that we use ι∗X : Sh(M) → ShX(M) to denote the left adjoint
of the inclusion ιX∗ : ShX(M) ↪→ Sh(M) for a conic closed subset X ⊆ T ∗M . By the
above Theorem 1.0.4, when Λ ⊆ S∗M is a singular isotropic, we will use the notation
W+

Λ(M) = ι∗Λ : Sh(M) → ShΛ(M) when emphasizing that ι∗Λ is given by wrappings. When
there is no ambiguity for the ambient manifold M , we simply write it as W+

Λ . We will use a
similar notation for the right adjoints.

4.4 Duality in dimension one

Recall in Section 3.6, we show that ShΛ(M)∨ = Sh−Λ(M) and use the uniqueness of counits
to conclude Theorem 1.0.3. We show in this section that the uniqueness of units provides
a formula for the equivalence on compact objects ShΛ(M)c,op = Sh−Λ(M)c and we use The-
orem 1.0.4 to compute some examples in dimension one. Thus, we consider the following
commutative diagram:

V ShΛ×−Λ(M ×M)

ShΛ(M)⊗ Sh−Λ(M)

V ShΛ(M)⊗ ShΛ(M)∨

ι∗Λ×−Λ∆∗p
∗

IdShΛ(M)

id⊗Ind(DΛ)

53



Here we recall that IdShΛ(M) is the diagonal bimodule induced by the Hom pairing
(G,F ) 7→ Hom(G,F ) for F , G ∈ ShΛ(M)c. Thus, the object ι∗Λ×−Λ1∆ represents it and,
for F ∈ ShΛ(M) and G ∈ Sh−Λ(M)c, we have the identification,

Hom(F �G, ι∗Λ×−Λ1∆) = Hom(F,DΛG).

Proposition 4.4.1. The equivalence ShΛ(M)∨ = Sh−Λ(M) provided by Proposition 5.1
induces an equivalence on compact objects

Sh−Λ(M)c = ShΛ(M)c,op

G 7→ DΛ(G) = p1∗Hom(p∗2G, ι
∗
Λ×−Λ1∆).

By Theorem 1.0.4, ι∗Λ×−Λ1∆ = W+
Λ×−Λ1∆ and we compute some examples in dimension

one using this fact.

Example 4.4.2. Let M = R1 and Λ = 0R1 , i.e., the case of local systems Loc(R1) = V
is generated by 1R1 , the constant sheaf on R1. Since there is no microsupport condition,
W+

Λ×−Λ1∆ = 1R2 [1] and DΛ(1R1) = 1R1 [1].

Example 4.4.3. Let M = R1 and Λ = 0R1 ∪ T ∗0,≤R1 where we use T ∗0,≤R1 to denote the
non-positive cotangent fiber at 0. In this case, the wrapped sheaves Sh−Λ(M)c is generated
by {1R1 , 1(−∞,0)} and the product microsupport condition is given by

Λ×−Λ = {(x, y, 0, 0)} ∪ {(0, y,−ξ, 0)} ∪ {(x, 0, 0, η)} ∪ {(0, 0,−ξ, η)}

where x, y run through R and ξ, η run through [0,∞).

Figure 4.1: The product microsupport condition (in purple).

To compute W+
Λ×−Λ1∆, we note that since there is no stop toward the (1,−1)-direction

and the diagonal is allowed to expand to an open region drawn below. In addition, when
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Figure 4.2: We use purple to indicate the microsupport condition and green for the support
of the “expanded diagonal”.

away from the origin, the upper boundary is allowed to bent toward the second quadrant.
Take the colimit and we see that W+

Λ×−Λ1∆ = 1U [1] where U = {x > 0} ∪ {y < 0}.
Recall that, for a locally close subset i : Z ↪→ X, the functor ΓZ is defined to be i∗i

! and
this implies the identification ΓZ ◦ ΓZ′ = ΓZ∩Z′ . We also use (3) of Proposition 3.1.8 to get
the identification Hom(1Z , F ) = ΓZ(F ). We can thus compute that DΛ(1R1) = p1∗1U [1] =
1(0,∞)[1], and

DΛ(1(−∞,0)) = p1∗Hom(1R1×(−∞,0), 1U [1]) = p1∗ΓR1×(−∞,0) ◦ ΓU(1R2)[1]

= p1∗Γ(R1×(−∞,0)∩U)(1R2)[1] = p1∗ΓR1×(−∞,0)(1R2)[1]

= p1∗1R1×(−∞,0][1] = 1R1 [1].

In other words, up to a shift and a sign, DΛ swap 1R1 and 1(−∞,0) in this case.

Example 4.4.4. Let M = R1 and Λ = 0R2 ∪ T ∗0 R1. In this case, the wrapped sheaves
Sh−Λ(M)c is generated by {1R1 , 1(−∞,0), 1(0,∞)}. Equivalently, Λ = N∗S where S is the
stratification S = {{∗}, (−∞, 0), (0,∞)} of R1 and Sh−Λ(M) = ShΛ(M) = ShS(M). The
product microsupport condition Λ×−Λ is given by N∗(S× S).

To compute W+
Λ×−Λ1∆, we note that 1∆ can be computed as the cofiber

1∆ = cof(1{x−y<0} ⊕ 1{x−y>0} → 1R2)

or alternatively
1∆ = cof(1R2 → 1{x−y≤0} ⊕ 1{x−y≥0}).

Take the second expression, then we see that

W+
Λ×−Λ1∆ = cof(1R2 → 1{x≤0,y≥0} ⊕ 1{x≥0,y≤0}).

Since 1{x≤0,y≥0} = Γ{x<0,y>0}(1R2), and there is a fiber sequence

Γ{x,y≥0}∪{x,y≤0}(F )→ F → Γ{x<0,y>0}∪{x>0,y<0}(F )

for any F ∈ Sh(R2), there is an identification W+
Λ×−Λ1∆ = i∗i

!1R2 [1] where we use i to denote
the closed inclusion i : {x, y ≥ 0} ∪ {x, y ≤ 0} ↪→ R2.
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Figure 4.3: The product microsupport condition (in purple).

Figure 4.4: We indicate the stalks of W+
Λ×−Λ1∆ by green.

We compute that

DΛ(1R1) = p1∗ cof(1R2 → 1{x≤0,y≥0} ⊕ 1{x≥0,y≤0})

= cof(1R1 → 1(−∞,0] ⊕ 1[0,∞)) = 1{0}.

Similarly, let j : R1×(−∞, 0) ↪→ R2 denote the open inclusion and consider the fiber product

{x ≤ 0, y < 0} R1 × (−∞, 0)

{x, y ≥ 0} ∪ {x, y ≤ 0} R2

i′

i

j′ j
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and compute

DΛ(1(−∞,0)) = p1∗Hom(1R1×(−∞,0), i∗i
!1R2 [1])

= p1∗j∗Hom(1R1×(−∞,0), j
!i∗i

!1R2 [1])

= (p1 ◦ j)∗Hom(1R1×(−∞,0), , i
′
∗i
′!1R1×(−∞,0)[1])

= (p1 ◦ j)∗1{x<0,y<0}[1] = 1(−∞,0)[1].

In sum, the functor DS shifts 1(−∞,0) and 1(0,∞) by [1] and interchange 1R1 and 1{0}.

Now we turn to the S1 case.

Example 4.4.5. We compute the coevaluation sheaf W+
0T2

1∆. First recall a similar but

simpler computation W+
0S1

1{0}. It can be computed as the colimit colim
n

(π!1[−n,n])[1] = π!1R1

where π : R1 → S1 is the projection.

Figure 4.5: The first few sheaves of the colimit colim
n

(π!1[−n,n]) where the green indicates

the support in the universal cover R1.

As one can see form the picture, the local system π!1R1 [1] has, up to the shift [1], 1⊕ZV
as its stalks and the monodromy m : 1⊕ZV → 1⊕ZV is given by shifting to the right by 1. The
sheaf W+

0T2
1∆ can be computed similarly and the resulting local system again has, up to

the shift [1], 1⊕ZV as its stalks. The monodromy induced by the two standard generators of
π1(T 2) = π1(S1 × S1) is again m for each direction.

Figure 4.6: The first few sheaves of the colimit W+
S1×S11∆. We use green again to indicate

the support and use red to indicate the microsupport at infinity of the sheaf at each step.
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To compute DΛ(π!1R1), we first consider the fiber product

S1 × R1 R1

S1 × S1 S1
p2

p̃2

(id, π) π

.

We thus compute that

DΛ(π!1R1) = p1∗Hom(p∗2π!1R1 ,W+
0T2

1∆)

= p1∗Hom((id×π)!1S1×R1 ,W+
0T2

1∆)

= p1∗(id×π)∗(id×π)∗W+
0T2

1∆

= (S1 × R1 → S1)∗(id×π)∗W+
0T2

1∆ = π!1R1 [1].

Here we note that the functor (id×π)∗ has the effect of forgetting the monodromy on the
vertical direction and the projection S1 ×R1 → S1 being an homotopic equivalence induces
an equivalence between local systems.

Example 4.4.6. Let M = S1 = R1/Z1 and Λ = 0S1 ∪T ∗0,≤S1 where we use T ∗0,≤S
1 to denote

the non-positive cotangent fiber at 0. Then the product support condition Λ × −Λ is the
projection of the R1 case we considered above. The coevaluation sheaf W+

Λ×−Λ1∆ can be
computed similarly as the local system case except the (−1, 1)-direction is stopped.

Figure 4.7: The wrapping process for W+
Λ×−Λ1∆. Again, we use purple for the microsupport

condition, green for the support, and red for the microsupport at the infinity.

Thus, the resulting local system has asymmetric slices, or more precisely, the horizontal
slice is given by π!1(−∞,0)[1] and the vertical slice is given by π!1(0,∞)[1].
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Figure 4.8: Horizontal and vertical direction of W+
−Λ×Λ1∆.

Unlike the R1 case, the wrapped sheaves ShΛ(S1)c is generated by one object π!1(0,∞).
Thus, we compute

DΛ(π!1(0,∞)) = p1∗Hom(p∗2π!1(0,∞),W
+
0T2

1∆)

= p1∗Hom((id×π)!1S1×(0,∞),W
+
0T2

1∆)

= (S1 × R1 → S1)∗Hom(1S1×(0,∞), (id×π)∗W+
0T2

1∆)

= π!1(−∞,0)[1].

As in the local system case, we pick out the horizontal slice.
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Chapter 5

Verdier duality

Let Sh(M)b := {F ∈ Sh(M)|Fx ∈ V0, x ∈M} be the category of sheaves with perfect stalks,
and set ShΛ(M)b := ShΛ(M) ∩ Sh(M)b. Recall that the Verdier dual

DM : ShΛ(M)b,op → Sh−Λ(M)b

F 7→ DM(F ) := Hom(F, ωM)

is an equivalence since the double dual F → DM(DM(F )) is an isomorphism by [32, Propo-
sition 3.4.3.].

Assume M is compact for this chapter. Then by Corollary 3.4.7, ShΛ(M)b ⊆ ShΛ(M)c

by Lemma 3.4.4. The goal of this chapter is to study conditions to extend the Verdier dual
DM : ShΛ(M)b,op = Sh−Λ(M)b to the whole ShΛ(M)c. We will consider a pair (ε, η) so that
ε is given by

ε = p∗∆
! : Sh−Λ×Λ(M ×M)→ V .

The sheaf kernel η ∈ ShΛ×−Λ(M×M), if exists, will be given as the convolution right inverse
of ι∗Λ×−Λ(w(Φ))⊗ p∗1ω−1

M where Φ is a small Reeb pushoff of Λ displacing it from itself. Here
we following the notation from the previous chapter and denote by w(Φ) ∈ Sh(M × M)
the restriction K(Φ)|t0 of the GKS sheaf quantization at some unspecified small t0. We will
show that assume the existence of η, this pair provides a duality ShΛ(M)∨ = Sh−Λ(M),
which restricts to the Verdier duality DM on ShΛ(M)b. We also prove that for the case when
Λ = N∗S where S is a Whitney triangulation of M , the sheaf kernel ι∗Λ×−Λ(w(Φ)) does admit
a convolution inverse and so such η exists. Finally, we show that ι∗Λ×−Λ(w(Φ)), regarded as
an endofunctor by convolution, has a purely sheaf-theoretic definition without referencing to
symplectic geometry.

5.1 Verdier duality as a categorical dual

We begin by recalling a classical identification.

Proposition 5.1.1 ([32, Proposition 3.4.4]). Let F , G ∈ Sh(M). If G ∈ Sh(M)b is con-
structible, then

DMG� F = Hom(p∗1G, p
!
2F ).
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This implies that if the Verdier duality were to come from a duality on ShΛ(M)c given
by a pair of unit/counit (η, ε), then the unit ε must by of the form

ε : Sh−Λ×Λ(M ×M)→ V
H 7→ p∗∆

!H.

For if F ∈ ShΛ(M), G ∈ Sh−Λ(M)b, we have

p∗∆
!(G� F ) = p∗∆

!(DM(DM(G))� F )

= p∗∆
! Hom(p∗1(DM(G)), p!

2F ) = p∗Hom((DM(G)), F ) = Hom(DM(G), F ).

Now take a small Reeb flow Φ : S∗M × I → S∗M so that ϕt(Λ) ∩ Λ = ∅ for I \ {0}
by Lemma 6.2.8. Equivalently, Φ is the homogeneous Hamiltonian isotopy associated to
H(x, ξ) :=

√
g∗x(ξ, ξ) on Ṫ ∗M for some Riemannian metric g on M . Write w(Φ) = K(Φ)|t

to be some the restriction of the GKS sheaf quantization at some unspecified positive time
t0. The main theorem of this section is the following:

Theorem 5.1.2. Assume ι∗Λ×−Λ(w(Φ)) admits a left inverse. Then the proposed (ε, η) in the
beginning of the chapter exhibits Sh−Λ(M)∨ = ShΛ(M) in PrL

st. Furthermore, the induced
equivalence Sh−Λ(M)c,op = ShΛ(M)c restricts to the Verdier duality on ShΛ(M)b ⊆ ShΛ(M)c.

The proof of this theorem follows the same logic as its counterpart in Section 3.6. That is,
we first identify the tensored functor id⊗ε and then check the triangle equality (id⊗ε)(η ⊗
id) = id. However, the situation is more complicated here since the definition of ε involves
!-pullback, which is only a right adjoint in general and usually doesn’t play well with �
product. The upshot of this section is that when restricting to sheaves with a fixed singular
isotropic microsupport, we can trade the !-pullbacks with left adjoints by the perturbation
trick Proposition 4.2.8 we developed earlier.

Lemma 5.1.3. The functor ε := p∗∆
! : Sh−Λ×Λ(M ×M)→ V is colimit preserving and thus

a well-defined morphism in PrL
st.

Proof. We define the product isotopy ϕ× ϕ to be the isotopy on Ṫ ∗(M ×M) whose Hamil-
tonian is given by (H ×H)(x, y, ξ, η) :=

√
H(x, ξ)2 +H(y, η)2. Recall that we use Hϕ×ϕ to

denote an unspecified positive pushforward by ϕ×ϕ. Then the perturbation trick (Proposi-
tion 4.2.8) implies that p∗∆

!H = Hom(1∆, H)
∼−→ Hom(1∆, H

ϕ×ϕ) = p∗∆
!Hϕ×ϕ. Then (4) of

Proposition 3.2.11 implies that the last term is the same as p∗∆
∗ ((w(ϕ× ϕ) ◦H)⊗ ω−1

M

)
,

which is colimit-preserving on H.

For the rest of the chapter, we will use qi, qij, i < j, to denote projections from M3 to
the corresponding components and pi for projections from M2.

Lemma 5.1.4. Under the identification

Sh−Λ×Λ(M ×M)⊗ Sh−Λ(M) = Sh−Λ×Λ×−Λ(M ×M ×M),

the functor

ε⊗ id : Sh−Λ×Λ(M ×M)⊗ Sh−Λ(M)→ V ⊗ Sh−Λ(M) = Sh−Λ(M)
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is identified as the functor

p2∗(∆× id)! : Sh−Λ×Λ×−Λ(M ×M ×M)→ Sh−Λ(M).

Proof. Note that this lemma is a variant of Lemma 3.6.1. For this lemma, we will apply
a slightly generalized version of the perturbation trick in Proposition 4.2.8. That is, in
addition to applying Proposition 4.2.8 to obtain Hom(1∆, H) = Hom(w(Φ−), H), for H ∈
Sh−Λ×Λ(M × M), by wrapping back along the continuation map w(Φ−) → 1∆, we note
that it induces an isomorphism q3∗ (Hom (q∗121∆, H � F )) = q3∗ (Hom (q∗12w(Φ−), H � F )),
for F ∈ Sh−Λ(M). We remark that the proof is essentially the same since the extra M -
component is trivial.

This way, we trade (ε⊗ id)(H,F ) := (p∗Hom(1∆, H))⊗F with (p∗Hom(w(Φ−), H))⊗F .
We can then do a similar computation as in Lemma 3.6.1 that(

p∗Hom(w(Φ−), H)
)
⊗ F =

(
p∗Γ(M ×M ;Hom

(
w(Φ−), H

)
⊗
)
F

=
(
q3∗q

∗
12 Hom

(
w(Φ−), H

)
⊗
)
F.

Now the key reason for us to use the perturbation trick is that w(Φ−) avoids −Λ×Λ and we
can apply (7) of Proposition 3.2.11 since w(Φ−) has perfects stalks by Example 4.2.5. That
is, we trade Hom (w(Φ−), H) with Hom (w(Φ−), 1M×M)⊗H and compute that(

q3∗q
∗
12 Hom

(
w(Φ−), H

)
⊗
)
F = q3∗

(
Hom

(
q∗12w(Φ−), q∗12H

)
⊗ q∗3F

)
= q3∗

(
Hom

(
q∗12w(Φ−), H � F

))
∼←− q3∗ (Hom (q∗121∆, H � F ))

= p2∗(∆× id)!(H � F )

by perturbing w(Φ−) back to 1∆.

Proof of Theorem 5.1.2. Again, this proof is a variant of the proof of Proposition . We have
to show that with the assumption on η, (id⊗ε)(η⊗ id) = id, or equivalently, p1∗(id×∆)!(η�
F ) = F for F ∈ Sh−Λ(M) by the last lemma. Again we use a slight generalized version of
the Perturbation trick from Proposition 4.2.8 to trade 1∆ with w(Φ−) whose microsupport
avoids −Λ× Λ×−Λ. This way, we can do a computation similar to the one for the lemma
above and see that

p2∗(∆× id)!(F � η) = q3∗(∆× id)∗Hom
(
1M×M , (∆× id)!(F � η)

)
= q3∗Hom

(
1∆×M , (∆× id)!(F � η)

)
= q3∗Hom

(
q∗12w(Φ−), F � η

)
= q3∗

(
Hom

(
q∗12w(Φ−), 1M3

)
⊗ (F � η))

)
= q3∗

(
q∗12 Hom

(
w(Φ−), 1M×M

)
⊗ q∗23η ⊗ q∗1F ))

)
Our goal now is to organize the pull/push functors associated to the projections, by (1)

and (2) of Proposition 3.1.8, into the form of convolutions. This process is a special case of
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the proof for Proposition 3.5.3.

q3∗
(
q∗12 Hom

(
w(Φ−), 1M×M

)
⊗ q∗23η ⊗ q∗1F ))

)
= p2∗q13∗

(
[q∗12 Hom

(
w(Φ−), 1M×M

)
⊗ q∗23η]⊗ q∗13p

∗
1F
)

= p2∗
(
q13∗[q

∗
12 Hom

(
w(Φ−), 1M×M

)
⊗ q∗23η]⊗ p∗1F

)
= p2∗(η ◦M Hom

(
w(Φ−), 1M×M

)
]⊗ p∗1F )

=
(
η ◦M Hom(w(Φ−), 1M×M)

)
◦ F.

Now we note that by Example 4.2.5, w(Φ) = Hom(w(Φ−), p∗1ωM). We recall also that,
for any L ∈ Loc(M) and G ∈ Sh(M), L⊗G = p∗1L ◦G. Thus by Lemma 3.2.15, the desired
sheaf kernel η exists if ι∗Λ×−Λ (w(Φ)) has a convolution right inverse of in view of Theorem
1.0.3 which identifies sheaf kernel with colimit-preserving endofunctors ShΛ×−Λ(M ×M) =
EndL(Sh−Λ(M)).

5.2 Wrap-once functor

Recall that we construct a sheaf kernel ι∗Λ×−Λ(w(Φ)) ∈ ShΛ×−Λ(M) where Φ : S∗M × I →
S∗M is a small Reeb flow such that ϕt(Λ) ∩ Λ = ∅ for tinI. To simplify the notation, we
consider its counterpart acting on ShΛ(M), and recall that ι∗−Λ×Λ(φ)◦F = ι∗Λ(F φ) = W+

Λ(F φ)
by Lemma 3.5.7 and theorem 1.0.4 . Geometrically, we wrap F forward away from Λ and
then wrap it all the way to back to Λ positively.

Definition 5.2.1. With the setting above, we use S+
Λ to denote the functor

SΛ : ShΛ(M)→ ShΛ(M)

F 7→ ι∗Λ(w(Φ) ◦ F )

and call it the wrap-once (positively) functor. When Λ = N∗S for some Whitney triangulation
S, we abuse the notation and write it simply as S+

S .

We remark that the definition of S+
Λ does not require of the compactness assumption of

M . We will show in the next section that the functor S+
Λ does not depend on the choice of

the small Reeb pushforward Φ.

Example 5.2.2. Consider the case when M = R1 and Λ = 0R1 ∪ (∪n∈ZT ∗n,≤R1). The
corresponding case over S1 is a on of projection of this picture. In this case, the functor S+

Λ

and its inverse is given by, up to a shift by [1], the constant sheaves supported in the shaded
areas below:
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A simple computation shows that convoluting by the first sheaf kernel sends 1(n,∞) to
1(n−1,∞) for n ∈ Z. Similarly, the second sheaf kernel sends 1(n,∞) to 1(n+1,∞) for n ∈ Z.

Remark 5.2.3. A parallel construction in the Fukaya setting is considered by Sylvan in [52]
where the invertibility of the wrap-once functor and a monodromy functor is proven under
a swappability assumption.

The main theorem of this section is that S+
S is invertible.

Theorem 5.2.4. Assume M is compact. The functor S+
S : ShS(M)→ ShS(M) is an equiv-

alence.

We will mainly use the convolution expression of ι−Λ×Λ(w(Φ))∗ ◦F for S+
S (F ). The main

strategy is to use general machinery of microlocal theory to write down an explicit formula
of its inverse.

Lemma 5.2.5. The right adjoint of the wrap-once functor S+
S : ShS(M) → ShS(M), which

we will denote it by S−S , is given by a convolution

S−S (F ) = Hom
(
ι∗S×S(1∆), p∗1ω

)
◦ F

and is, in particular, colimit preserving.

Proof. By definition, the functor S−S is classify by Hom(S+
S (G), F ) = Hom(G,S−S (F )) for all

F,G ∈ ShΛ(M). And moving everything except ι∗S×S(w(Φ)) to the right hand side, we see
that

Hom(S+
S (G), F ) = Hom

(
ι∗S×Sw(Φ),Hom(p∗1G, p

!
2F )
)

= Hom
(
w(Φ),Hom(p∗1G, p

!
2F )
)
.

The virtual of w(Φ) over ι∗S×Sw(Φ) is that its microsupport avoids 0 × N∗S and we can
apply (7) of Proposition 3.2.11 to trade Hom(w(Φ), p!

2F ) with Hom(w(Φ), 1M×M) ⊗ p!
2F

and compute that

Hom
(
w(Φ),Hom(p∗1G, p

!
2F )
)

= Hom
(
p∗1G,Hom(w(Φ), p!

2F )
)

= Hom
(
p∗1G,Hom(w(Φ), 1M×M)⊗ p!

2F
)

= Hom
(
p∗1G,Hom(w(Φ), p!

21M)⊗ p∗2F
)

= Hom(G,w(Φ−) ◦ F ).

Here we use the fact that Hom(w(Φ), p!
21M) = w(Φ−) and the fact that w(Φ) is symmetric

with respect the two components of M ×M to obtain the last equality. Since w(Φ−) ◦ F
is not in ShS(M), we use the tautological identity G = (ι∗S×S1∆) ◦ G to further change the
expression to

Hom(G,w(Φ−) ◦ F ) = Hom(ι∗S×S1∆ ◦G,w(Φ−) ◦ F )

= Hom
(
p∗1G,Hom(ι∗S×S1∆, p

!
2(w(Φ−) ◦ F )

)
.

Now the main reason to consider the case of triangulation S is that the object (ι∗S×S1∆),
which is a compact object in ShS×S(M ×M) has perfect stalks by Proposition 3.3.3. Thus
for a similar reason as above, we can apply (7) of Proposition 3.2.11 again and conclude that
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Hom
(
p∗1G,Hom(ι∗S×S1∆, p

!
2(w(Φ−) ◦ F )

)
= Hom

(
p∗1G,Hom(ι∗S×S1∆, p

!
21M)⊗ p∗2(w(Φ−) ◦ F )

)
= Hom

(
G,Hom(ι∗S×S1∆, p

∗
1ωM) ◦ (w(Φ−) ◦ F )

)
Thus S−S (F ) = Hom(ι∗S×S1∆, p

∗
1ωM) ◦ (w(Φ−) ◦ F ). However, by Lemma 3.5.7,

Hom(ι∗S×S1∆, p
∗
1ωM) ◦ (w(Φ−) ◦ F = Hom(ι∗S×S1∆, p

∗
1ωM) ◦

(
ι∗S×Sw(Φ−)

)
◦ F

= Hom(ι∗S×S1∆, p
∗
1ωM) ◦ F

since ι∗S×S = W+
S×S by Theorem 1.0.4 and we can wrap w(Φ−) tautologically forward to 1∆.

Proof of Theorem. 5.2.4 The adjunction ι∗S×S(w(Φ)) ◦ (−) a Hom
(
ι∗S×S(1∆), p∗1ωM

)
◦ (−)

implies that there is a canonical map

Hom
(
(ι∗S×S1∆), p∗1ωM

)
◦
(
ι∗S×Sw(Φ) ◦ (F )

)
→ F,

and we show that this is an equivalence by a similar computation as the last lemma in a
revered order. First, one notice that the second ι∗S×Sw(Φ) is redundant since we can apply
Lemma 3.5.7 and (7) of Proposition 3.2.11 again and compute that

Hom(ι∗S×S(1∆), p∗1ωM) ◦
(
ι∗S×S(w(Φ)) ◦ F

)
= Hom(ι∗S×S(1∆), p∗1ωM) ◦ (w(Φ) ◦ F )

= Hom◦(ι∗S×S(1∆), w(Φ) ◦ F ) = ι!S(w(Φ) ◦ F ).

Note for the last equality, we use the right adjoint version of the equality ι∗S×S(1∆) ◦ (G) =
ι∗S(G) for G ∈ Sh(M). Now we note that ι!S(w(Φ) ◦ F ) = W−

S (w(Φ) ◦ F ) = F by wrapping
w(Φ) backward to 1∆ tautologically.

We also have to show that the canonical map,

G→ ι∗S×S(w(Φ)) ◦ (Hom
(
ι∗S×S(1∆), p∗1ωM

)
◦G)

is also an equivalence.
Take H ∈ ShS(M) and we compute that with similar techniques as above that

Hom(ι∗S×S(w(Φ)) ◦ (Hom
(
ι∗S×S(1∆), p∗1ωM

)
◦G), H)

= Hom(w(Φ) ◦ (Hom
(
ι∗S×S(1∆), p∗1ωM

)
◦G), H)

= Hom(Hom
(
ι∗S×S(1∆), p∗1ωM

)
◦G,w(ϕ−) ◦H)

= Hom
(
p∗1G,Hom(Hom

(
ι∗S×S(1∆), p∗1ωM

)
, p!

2(w(ϕ−) ◦H)
)

= Hom
(
p∗1G,Hom(Hom

(
ι∗S×S(1∆), p∗1ωM

)
, p∗1ωM)⊗ p∗2(w(ϕ−) ◦H)

)
.

Now we note that, since ι∗S×S(1∆) has perfect stalks, the canonical map for the double dual

ι∗S×S(1∆)→ Hom(Hom
(
ι∗S×S(1∆), p∗1ωM

)
, p∗1ωM)
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is an isomorphism. Thus we have

Hom(ι∗S×S(w(Φ)) ◦ (Hom
(
ι∗S×S(1∆), p∗1ωM

)
◦G), H) = Hom

(
p∗1G, ι

∗
S×S(1∆)⊗ p∗2(w(ϕ−) ◦H)

)
= Hom

(
G, ι∗S×S(1∆) ◦ (w(ϕ−) ◦H)

)
= Hom

(
G, ι∗S(w(ϕ−) ◦H)

)
= Hom(G,H),

which implies G = ι∗S×S(w(Φ)) ◦ (Hom
(
ι∗S×S(1∆), p∗1ωM

)
◦G.

5.3 Wrap-once as dual cotwist

For this section, we do not need the assumption of M being compact. It is proven in [52],
that the Fukaya counterpart of the wrap-once functor S+

Λ is the dual cotwist of a certain
spherical functor in the sense of [3]. We will consider a much simpler statement in our
setting.

Recall that the st-valued sheaf ShΛ on M can be microlocalized to T ∗M in the sense
that there is a conic sheaf µshΛ on T ∗M such that µshΛ |0M and, for each conic open subset
Ω ⊆ T ∗M , the category µshΛ(Ω) is a compactly generated stable category, and for each
inclusion of conic opens Ω ⊆ Ω′, the restriction map µshΛ(Ω′) → µshΛ(Ω) preserves both
limits and colimits. A more detailed discussion of µshΛ, the sheaf of microsheaves, can be
found in [41, Chapter 3].

Denote by q∗ : ShΛ(M) � µshΛ(Ṫ ∗M) : q! the restriction associated to µshΛ from T ∗M
to Ṫ ∗M and its left adjoint. Note that µshΛ(M) = ShΛ(M) since µshΛ |0M and µshΛ is conic.

Definition 5.3.1. We denote by S+,c
Λ : ShΛ(M) → ShΛ(M), the dual cotwist associated to

q∗ which by definition is defined by the fiber sequence,

q!q
∗ → idShΛ(M) → S+,c

Λ

where the map q!q
∗ → idShΛ(M) is the counit of the q! a q∗ adjunction.

Proposition 5.3.2. There is an identification S+,c
Λ = S+

Λ : ShΛ(M)→ ShΛ(M). In particu-
lar, the definition of S+

Λ does not depend on the choice of the small Reeb push Φ.

What we need for µshΛ is its local description from [41, 3.4]: For any (x, ξ) ∈ Λ, we may
chose a small open ball Ω ⊆ S∗M containing Λ such that µshΛ(Ω) fits in a fiber sequence,

K(B,Ω) ↪→ ShΛ(B,Ω)→ µshΛ(Ω),

where B = π∞(Ω), ShΛ(B,Ω) consists of sheaves F on B such that SS∞(F ) ∩ Ω ⊆ Λ, and
K(B,Ω) is its subcategory so that SS∞(F ) ∩ Ω = ∅.

Lemma 5.3.3. The composition q!q
∗F → F

c−→ S+
Λ (F ) is zero where c : F → S+

Λ (F ) is the
continuation map obtained from the expression S+

Λ (F ) = W+
Λ(Fϕ). As a result, there is a

canonical map S+,c
Λ → S+

Λ .
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Proof. Recall that for an adjunction s : A� B : l, there is an equivalence

Hom(lx, y) = Hom(x, sy)

α 7→ s(α) ◦ η

where η : x→ slx is the unit. In our case, the object x is q∗F and the unit η : q∗F
∼−→ q∗q!q

∗F
is an equivalence so the composition being zero is the same as the morphism q∗c being zero
in µshΛ(Ṫ ∗M). Now µshΛ being a sheaf of categories means morphisms associated to these
categories form sheaves, and it is enough to show that, for all (x, ξ) ∈ R>0Λ, there exists
Ω 3 (x, ξ) such that q∗c restricts to zero on Ω. Since ϕ displace Λ from itself, shrink Ω if
needed, we may assume that ϕ(SS∞(F ))∩Ω = ∅. But then c : F → S+

Λ (F ) factors through
F → Fϕ → S+

Λ (F ) with the object in the middle being 0.

In order to prove Proposition 5.3.2, we recall some implication of ShΛ being a sheaf: Let
{Ui}i∈I be an open cover of M . Then the statement Sh(M)

∼−→ limi Sh(Ui) implies that, for
F ∈ Sh(M), the counit

colim
I

FUi → F

is an equivalence. This description is inherited by ShΛ, i.e., for an open set j : U ⊂ M , the
left adjoint of j∗ : ShΛ(M)→ ShΛ|U (U) is given by

ShΛ|U (U)→ Sh(M)

G 7→W+
Λ(q!G)

where we use j : U ⊆M to denote the inclusion, and the counit, now with the wrapping,

colim
I

W+
Λ(ji!FUi)→ F

is an equivalence for F ∈ ShΛ(M). In fact, this follows from the simple fact that W+
Λ is

colimit-preserving so that

colim
I

W+
Λ(ji!FUi) = W+

Λ(colim
I

ji!FUi)

= W+
ΛF

∼←− F.

We would like to utilize this last computation to prove the main proposition.

Proof of Proposition 5.3.2. Take an open cover {Ωi} of Λ such that each R>0Ωi is a small
cone so that µshΛ(Ωi) fits in a fiber sequence

K(Bi,Ωi) ↪→ ShΛ(Bi,Ωi)→ µshΛ(Ωi)

where Bi = π∞(Ωi). We denote by İ its index set. We notice that {Bi}İ ∪ {M \ π∞(Λ)}
forms an open cover of M , which we will simply denote it by {Ui}i∈I . By Theorem 1.0.4,
the left adjoint of the inclusion K(Bi,Ωi) ↪→ ShΛ(Bi,Ωi) can be described by

ShΛ(Bi,Ωi)→ K(Bi,Ωi)

G 7→ colim
w:Ωi

(Gw) =: W+
i (G)
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where w : Ωi means positive wrappings compactly supported in Ωi. Denote by

q∗i : ShΛ(Bi,Ωi)� µshΛ(Ωi) : qi!

the adjunction over Ωi. Fix an F ∈ ShΛ(M), for and i ∈ İ, there exists a fiber sequence

qi!q
∗
i F |Bi → F |Bi →W+

i (F |Bi).

Denote by ri : Ωi ↪→ S∗M the inclusion and r∗i : µshΛ(Λ) � µshΛ(Ωi) : ri! the induced
adjunction on microsheaves. The fact that µshΛ is a sheaf implies that we can glue q∗F from
ri!r

∗
i q
∗F and the canonical map

q∗F
∼←− colim

İ
ri!r

∗
i q
∗F

is an isomorphism. We recall that we have the following commutative diagram of categories
induced by inclusions of opens.

ShΛ(M) ShΛ(Bi)

µshΛ(Ṫ ∗M) µshΛ(Ωi)

j∗i

r∗i

q∗ q∗i

Thus ri!r
∗
i q
∗F = ri!q

∗
i F |Bi . A similar diagram for the left adjoints implies that

q!q
∗F = q!colim

İ
ri!r

∗
i q
∗F

= colim
İ

q!ri!r
∗
i q
∗F

= colim
İ

W+
Λji!qi!q

∗
i F |Bi .

Since F = colim
I

W+
Λji!F |Bi , we get that

S+,c
Λ (F ) = colim

I
W+

Λji!W
+
i (F |Bi).

Note that we use the fact that the colimit for q!q
∗F can be trivially extended to be taken

over I. To get rid of the W+
i term, we further assume that supp(ϕt) ∩ S∗Bi ⊆ Ωi for all

i ∈ İ. This assumption ensures that ϕt restricts to S∗Bi and (F |Bi)ϕ = Fϕ|Bi , for i ∈ İ.
Now, the key observation is that, since ϕt has pushed SS(F ) away from Λ and Ωi has the
form of a product of small balls,

W+
i (F |Bi) := W(Ωi)

+(F |Bi) = W(Ωi \ Λ)+(Fϕ|Bi).

To see what W+
Λji!W(Ωi \ Λ)+(Fϕ|Bi) = W+

Λ ((Fϕ)Bi) ∈ ShΛ(M), we take G ∈ ShΛ(M) and
compute that

Hom(W+
Λji!W(Ωi \ Λ)+(Fϕ|Bi), G) = Hom(W(Ωi \ Λ)+(Fϕ|Bi), G|Bi)

= Hom(Fϕ|Bi ,W(Ωi \ Λ)−G|Bi) = Hom(Fϕ|Bi , G|Bi) = Hom
(
W+

Λ ((Fϕ)Bi) , G
)
.
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Finally, we patch everything back and get

S+,c
Λ (F ) = colim

I
W+

Λ ((Fϕ)Bi) = W+
Λcolim

I
(Fϕ)Bi = W+

ΛF
ϕ = S+

Λ (F ).
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Chapter 6

The category of wrapped sheaves

In this section, we make our main construction of this dissertation and mimic the definition
of W(T ∗M,Λ), the (partially) wrapped Fukaya category associated to the pair (T ∗M,Λ),
and define the category of wrapped sheaves wshΛ(M) using the techniques developed in the
Chapter 4. We note that although this and the next chapter is logically independent from
[20, 19], many of the proofs are adaptations from the wrapped Fukaya setting to the wrapped
sheaves setting.

6.1 Definition

Let M be a real analytic manifold and Λ ⊆ S∗M be a closed subset. Let w̃shΛ(M) be the
small subcategory of Sh(M) generated under finite colimits and retracts by sheaves of the
form Fw(Φ) where F is a sheaf with compact support such that SS∞(F ) is a subanalytic
singular isotropic and SS∞(F ) ∩ Λ = ∅, and Φ is a contact isotopy compactly supported
away from Λ. To encode the effect of wrappings, we take

CΛ(M) := 〈cof(c(Ψ, F ))|Ψ ∈ Mor(W (S∗M \ Λ)), F ∈ w̃shΛ(M)〉

to be the subcategory of w̃shΛ(M) generated by the cofibers of the continuation maps.

Definition 6.1.1. We define the category of wrapped sheaves associated to (M,Λ) to be the
quotient category

wshΛ(M) := w̃shΛ(M)/CΛ(M)

:= cof
(
CΛ(M) ↪→ w̃shΛ(M)

)
where the cof is taken in st.

Remark 6.1.2. Localization identifies sheaves which are isotopic to each other: Let F
c−→

Fw → cof(c) be a fiber sequence in w̃shΛ(M) induced by a continuation map. Since a
quotient map is exact and cof(c) = 0 in wshΛ(M), the fiber sequence becomes F

c−→ Fw → 0
and hence c : F → Fw is an isomorphism in wshΛ(M). Now let Φ be any isotopy compactly
supported away from Λ. By Proposition 4.3.6, Φ can be modified to be positive by a further
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wrapping. That is, there exists Ψ : id→ Φ′ and Ψ′ : Φ→ Φ′ in W (S∗M \Λ) and thus there

are continuation maps F
c(Ψ,F )−−−−→ FΦ and F

c(Ψ′,F )−−−−→ FΦ′ . As a result, the two objects F and
FΦ are isomorphic in wshΛ(M).

To simplify the notation, we will use Homw to denote the Hom spaces of the localized
category when the context is clear. As the localization is essentially surjective, we usually
implicitly assume a preimage F ∈ w̃shΛ(M) for objects in wshΛ(M). By Proposition 2.4.2,
there are identifications

Homw(X, Y ) = colim
Y
α−→Y ′

Hom(X, Y ′) = colim
X′

β−→X

Hom(X ′, Y )

where α and β run through morphisms whose cofibers cof(α), cof(β) are in CΛ(M). We will
show that it is enough to take the colimit over W (S∗M \ Λ) in our case, which is the same
colimit over all continuation maps c : F → Fw by cofinality. We begin with the case of
Homing out of objects in CΛ(M) and in this case Homw vanishes.

Lemma 6.1.3. Let G ∈ CΛ(M) and F ∈ w̃shΛ(M), we have

colim
c:F→Fw

Hom(G,Fw) = 0 = Homw(G,F )

where F
c−→ Fw runs through all continuation maps.

Proof. We first consider the case when G ∈ CΛ(M) is built from iterated cones and shifts
of cof(c) for some continuation map c. For such a G, we may assume G fits into a cofiber
sequence H

c−→ Hw(Φ) → G by induction. Apply Hom(−, Fw(Φ′)) and we obtain the cofiber
sequence

Hom(G,Fw(Φ′))→ Hom(Hw(Φ), Fw(Φ′))→ Hom(H,Fw(Φ′)).

Then one compute

Hom(Hw(Φ), Fw(Φ′)) = Hom(w(Φ) ◦H,w(Φ′) ◦ F )

= Hom(H,w(Φ−1) ◦ w(Φ′) ◦ F )

= Hom(H,w(Φ−1 ◦ Φ′) ◦ F ).

Take colim
F→Fw′

over isotopies Φ′ of the form Φ ◦Ψ, which is cofinal, and we obtain the fiber

sequence

colim
F→Fw′

Hom(G,Fw′)→ colim
F→Fw′

Hom(H,Fw′)
∼−→ colim

F→Fw′
Hom(H,Fw′).

This implies that colim
F→Fw′

Hom(G,Fw′) = 0.

Now let G′ be a retract of the same G as above. Taking colim
F→Fw

Hom(−, Fw) makes

colim
F→Fw

Hom(G′, Fw) a retract of colim
F→Fw′

Hom(G,Fw′) = 0. Since the only retract of a zero

object is a zero object, we conclude that colim
F→Fw

Hom(G′, Fw) = 0.

71



Proposition 6.1.4. For F,G ∈ w̃shΛ(M), we have

Homw(G,F ) = colim
F→Fw

Hom(G,Fw)

where F
c−→ Fw runs through all continuation maps.

Proof. Consider any morphism α : G′ → G such that fib(α) ∈ CΛ(M) which we will denote

it as G′
qis.−−→ G when the exact morphism α is not relevant. Now take a continuation map

c : F → Fw and apply Hom(−, Fw) to the fiber sequence fib(α) → G′ → G, we obtain the
fiber sequence

Hom(G,Fw)→ Hom(G′, Fw)→ Hom(fib(α), Fw).

Now recall that Homw can be computed by either varying the first or the second factor. As
a result, we can first take colimit over such α : G′ → G and we obtain the fiber sequence

Hom(G,Fw)→ Homw(G,Fw)→ colim
G′

qis.−−→G

Hom(fib(α), Fw).

Then we take colimit over F → Fw and get

colim
F→Fw

Hom(G,Fw)→ colim
F→Fw

Homw(G,Fw)→ colim
F→Fw

colim
G′

qis.−−→G

Hom(fib(α), Fw).

Since colimits commute with each other, the above Lemma 6.1.3 implies

colim
F→Fw

colim
G′

qis.−−→G

Hom(fib(α), G′) = colim
G′

qis.−−→G

colim
F→Fw

Hom(fib(α), G′) = 0

or, equivalently

colim
F→Fw

Hom(G,Fw)
∼−→ colim

F→Fw
Homw(G,Fw)

∼−→ Homw(G,F ).

Here we use that fact that F → Fw is an isomorphism in wshΛ(M).

We note that the above construction is covariant on the open sets of M . For an open
set U ⊆ M , we set Λ|U = Λ ∩ S∗U . We abuse the notation and use w̃shΛ(U) to denote the

category w̃shΛ|U (U). When there is an inclusion of open sets U ⊆ V , objects in w̃shΛ(U) can

be naturally regarded as objects in w̃shΛ(V ) since we require them to have compact support

in U . We define CΛ(U) similarly and note that CΛ(U) ⊆ w̃shΛ(U) ∩ CΛ(V ). Thus there is a
canonical map wshΛ(U)→ wshΛ(V ).

Definition 6.1.5. The above construction defines a covariant functor wshΛ : OpM → st,
i.e., a precosheaf with coefficient in idempotent complete small stable categories. We refer
it as the precosheaf of wrapped sheaves associated to Λ.

Note also that this construction is contravariant on the closed set Λ. That is, if Λ ⊆ Λ′

is an inclusion of closed subset of S∗M , there is a canonical map wshΛ′(U) → wshΛ(U) for
U ⊆ M by a similar consideration. In other words, there is a morphism wshΛ′ → wshΛ

between precosheaves.
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Remark/Conjecture 6.1.6. Consider the case when Λ is a subanalytic singular isotropic.
Inspired by homological mirror symmetry, Nadler defines in [41] a conic cosheaf µshwΛ :
OpT ∗M → st through a purely categorical construction and term it as the cosheaf of wrapped
microlocal sheaves. This cosheaf can be obtained from and determines the sheaf µshΛ, which
we used in Section 5.3, by passing to compact objects. One main property of µshwΛ is that its
restriction to the zero section, the ‘wrapped sheaves’, is the cosheaf ShcΛ discussed in Propo-
sition 3.4.8. We will reserve the term ‘wrapped sheaves’ for the geometrically constructed
category wshΛ through this paper. Corollary 1.0.7 of the main theorem asserts that these
two cosheaves are the same after all. As a result, we expect to extend the construction wshΛ

to the cotangent bundle as well.

6.2 Generation

We find a set of generators of wshΛ(M) when Λ is a singular isotropic. We first prove a
special case of the Künneth formula which we will refer it as the stabilization lemma. The
corresponding lemma in the Fukaya setting can be found in [19, (1.7), (1.8)]. Fix n ∈ Rn.
Let M be a real analytic manifold and Λ ⊆ S∗M be a closed subset. We set

Λst = ((R>0Λ ∪ 0M)× 0Rn)∞ ⊆ S∗(M × Rn).

Pick a small ball B ⊆ Rn centered at 0. For F ∈ Sh(M), by (6) of Proposition 3.2.11,
there is microsupport estimation

SS(F � 1B) ⊆ SS(F )×N∗out(B).

As a result, exterior tensoring with 1B induces a functor

−� 1B : w̃shΛ(M)→ w̃shΛst (M × Rn) .

We claim that this functor induces a fully faithful functor on the quotient. We first recall a
lemma.

Lemma 6.2.1. Let C, D be stable categories, S and T be sets of morphisms in C and D

which are closed under composition and contain identities. Set C0 := 〈cof(s)|s ∈ S〉 and
D0 := 〈cof(t)|t ∈ T 〉. Let F : C → D be a functor such that for all X0

s−→ X1 ∈ S, there

exists F (X1)
t−→ Y ∈ T such that t◦F (s) ∈ T . Then F |C0 factors through D0 and F descends

to a functor F̄ : (C/C0)→ (D/D0) filling the commutative square with the quotient functors:

C0 C C/C0

D0 D D/D0

F |C0 F F̄

.

Proof. Let X0
s−→ X1 and F (X1)

t−→ Y ∈ T be as above. By the Lemma 2.2.11, there exists
a fiber sequence F (cof(s))→ cof(t ◦ F (s))→ cof(t).
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Proposition 6.2.2 (The stabilization lemma). The functor −� 1B defined above descends
to a fully faithful functor on the quotient

wshΛ(M) ↪→ wshΛst(M × Rn)

which we will refer it as the stabilization functor.

Proof. Let Φ : Ṫ ∗M × I → Ṫ ∗M be a positive homogenous symplectic isotopy and H =
α(Φ∗∂t) be its corresponding Hamiltonian. We note that since H is not defined on the
entire T ∗M , it is not always possible to extend it to Ṫ ∗(M ×Rn) by setting the dependence
on the second component to be constant. Nevertheless, H2 is defined on T ∗M since it is
homogeneous of degree 1. Pick a bump function ρ on S∗(M × Rn) such that (supp(H) ×
T ∗B)∞ ⊆ Int(supp(ρ)) so that H2 +ρ|ξ|2 > 0 when H > 0. Here we use the same notation ρ
to denote its pullback on Ṫ ∗M . Then set H̃ :=

√
H2 + ρ|ξ|2 and we denote its corresponding

homogeneous isotopy on Ṫ ∗(M × Rn) by Φ̃.
The above construction implies that

SS
(

(K(Φ−1)�I 1∆Rn×I) ◦I K(Φ̃)
)
⊆ SS(K(Φ−1)�I 1∆Rn×I) ◦I SS(K(Φ̃)) ⊆ {τ ≤ 0}

since H(x, ξ) ≤ H̃(x, ξ, t, τ). Thus there is a continuation map

1∆M×Rn → (w(Φ−1)� 1∆Rn ) ◦ w(Φ̃)

or equivalently
w(Φ)� 1∆Rn → w(Φ̃)

which precomposes with 1∆M×Rn → w(Φ)�I 1∆Rn to 1∆M×Rn → w(Φ̃). Thus, the last lemma
implies that the functor

wshΛ(M)→ wshΛst(M × Rn)

is well-defined.
A similar argument implies that for any positive isotopy Ψ on Ṫ ∗(M × Rn) with Hamil-

tonian H̃, there exists H on Ṫ ∗M and ρ on Ṫ ∗Rn such that H̃ ≤
√
H2 + ρ2. Thus wrap-

pings coming from the product is cofinal. Since B is contractible, there is an isomorphism
Hom(F � 1B, G� 1B̃) = Hom(F,G) for any larger ball B̃ in Rn. This implies

HomwshΛst (M×Rn)(G� 1B, F � 1B) = colim
Φ̃∈W (S∗(M×Rn)\Λst)

Hom
(
G� 1B, (F � 1B)Φ̃

)
= colim

Φ̃∈W (S∗(M×Rn)\Λst)
Hom

(
G� 1B, F

Φ � 1B̃
)

= colim
Φ∈W (S∗M\Λ)

Hom
(
G,FΦ

)
= HomwshΛ(M)(G,F ).

Thus, the stabilization functor wshΛ(M) ↪→ wshΛst(M × Rn) is fully faithfull.
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Now we show that the category wsh∅(M) is generated by one object. More precisely, we
say an open set B ⊆M is a ball if B is relative compact, contractible and B is a closed disk.
Now let B be a ball such that there exists an open chart U containing B. Since all such balls
are smoothly isotopic to each other inside M , lifting such isotopies implies that the object
1B, where B is a such ball, is independent of the choice of the exact ball. In order to show
that 1B is a generator, we need a class of auxiliary objects.

Definition 6.2.3. We say that an open set B ⊆M is a stable ball if it is relative compact,
contractible, and B has a smooth boundary in M .

One can check that a stable ball is a ball up to a stabilization by the famous corollary of
the cobordism theorem. The following statements are Theorem 5.12 and Corollary 5.13 in
[21].

Theorem 6.2.4. A stable ball of dimension ≥ 6 with simply connected boundary is a ball.

Corollary 6.2.5. Let M be a stable ball. Then B× Ik is a ball provided dimB + k ≥ 6 and
k ≥ 1.

Proof. This is implied by a combination of the van Kampen Theorem and the Poincáre
duality for manifolds with boundary

HdimN−k(N, ∂N) = Hk(N).

Lemma 6.2.6. Assume M is connected. The category wsh∅(M) is generated under finite
colimits and retractions by 1B for any small ball B.

Proof. Let F ∈ wsh∅(M) be an object. By Remark 6.1.2, we may assume F is a sheaf with
compact support, subanalytic isotropic microsupport, and perfect stalks. By Proposition
3.4.5, there is a Whitney triangulation T such that F is T-constructible. Since ShN∗∞T(M)c =
Perf T is generated under finite colimits and retractions by 1star(t) for t ∈ T, we may assume
F = 1star(t). We claimed that the object 1star(t) is isomorphic to 1B for some small ball
B ⊆ star(t). Note the open set star(t) is relatively compact and contractible, however,
star(r) might not be a manifold with boundary and modification needs to be made.

Apply the inward cornering construction in Definition 3.3.9 to U = star(t), we obtain
a family of star(t)−ε depending smoothly on ε. When ε is small, the object 1star(t)−ε in
wshΛ(M) is independent of ε so we abuse the notation and simply denote it by 1star(t)− . As
there is no stop restriction, the canonical map 1star(t)− → 1star(t) becomes an isomorphism

in wsh∅(M) through the positive wrapping obtained by taking ε→ 0. The closure star(t)−

is a manifold with corners when ε is small, i.e., the boundary star(t)− can be modified by
the boundary of the inclusion [0,∞)k × Rn−k ⊆ Rn for some k ≥ 1. By Example 3.2.5,
SS∞(1(0,∞)k×Rn−k) is smooth and 1(0,∞)k×Rn−k can be wrapped to some 1Vδ where Vδ := {x ∈
Rn|d(x, [0,∞)k × Rn−k) < δ} by the Reeb flow. One can see from the local model that the
boundary of Vδ is smooth for small δ. Thus, we may further replace 1star(t)− by some 1U such
that U is relative compact, contractible and has smooth boundary, i.e., a stable ball.
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Finally pick a ball B ⊆ U and consider the canonical morphism 1B → 1U induced by the
inclusion. Apply the stabilization lemma for n large and we see from the last corollary that
we may assume U to be a ball as well. In this case, the canonical map 1B → 1U coincide with
the continuation map obtained by the standard Reeb flow and is an isomorphism. Thus, the
original map is an isomorphism in wsh∅(T ∗M) and we see that 1B generates.

We assume for the rest of this section that Λ is a singular isotropic. To study generation
for the general case, we need the following lemma to perform general position argument.

Definition 6.2.7 ([19, Definition 1.6]). Let Y 2n−1 be a contact manifold. We say a set f is
mostly Legendrian if there is a decomposition f = fsubcrit∪ fcrit ⊆ Y for which fsubcrit is closed
and is contained in the smooth image of a second countable manifold of dimension < n− 1,
and fcrit is a Legendrian submanifold.

We note that a closed singular isotropic Λ is in particular mostly Legendrian.

Lemma 6.2.8 ([19, Lemma 2.2 and Lemma 2.3]). Let Y 2n−1 be a contact manifold and f be
mostly Legendrian.

1. Let Λ ⊆ Y be a compact Lagrangian. Then Λ admits cofinal wrappings Λ  Λw with
Λw disjoint from f.

2. Let Λ1, Λ2 ⊆ Y be compact Legendrians disjoint from f. Consider the space of positive
Legendrian isotopies Λ1  Λ2. Then the subspace of isotopies which

2.1. remains disjoint from fsubcrit and

2.2. intersect fcrit only finitely many times, each time passing transversally at a single
point,

is open and dense.

For inclusion of singular isotropics Λ ⊆ Λ′ ⊆ S∗M , general position argument implies
that the induced map wshΛ′(M) → wshΛ(M) is always essentially surjective. In order to
study the fiber of this map, we consider the following objects:

Let Λ be a subanalytic singular isotropic and let (x, ξ) ∈ R>0Λ be a smooth point.
Consider a proper analytic Λ-Morse function f : M → R. We assume there exists ε > 0
such that x is the only Λ-critical point over f−1([−ε, ε]) with critical value 0, dfx = ξ
and f−1(−∞, ε) is relatively compact. By our assumption, both 1f−1(−∞,±ε) are objects of

w̃shΛ(M).

Definition 6.2.9. A sheaf-theoretical linking disk at (x, ξ) (with respect to Λ) is an object
D(x,ξ) of the form

cof(1f−1(−∞,−ε) → 1f−1(−∞,ε)) ∈ wshΛ(M)

where the arrow is induced by the inclusion of opens f−1(−∞,−ε) ⊆ f−1(−∞, ε) given by a
function f with the above properties. Note that by scaling f with r ∈ R>0, we see that the
object D(x,ξ) depends only on (x, ξ)’s image in S∗M . Thus, we also use the same notation
D(x,ξ) for (x, ξ) ∈ S∗M .
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Remark 6.2.10. Since df 6= 0 over f−1([−ε, ε]), the fibers f−1(t) for t ∈ [−ε, ε] are smooth
submanifolds. Thus, the canonical map 1f−1(−∞,−ε) → 1f−1(−∞,ε) is also given by the contin-
uation map of the wrapping {N∗∞,outf−1(−∞, t)}t∈[−ε,ε] which passes through Λ transversely
exactly once at (x, [ξ]). Extend this wrapping to a global one Ψ. Since there is no other
intersection with Λ, we can decompose Ψ to Ψ+#Ψ0#Ψ− so that Ψ± do not intersect Λ and
Ψ0 only moves points near (x, ξ). This way, we can see D(x,ξ) can be presented as a cofiber
induced by an expanding open half-plane.

Thus, D(x,ξ) can also be presented as a cofiber induced by inclusions of small balls.

Proposition 6.2.11. Let Λ ⊆ Λ′ be subanalytic singular isotropics and let Dw
Λ′,Λ(M) denote

the fiber of the canonical map wshΛ′(M) → wshΛ(M). Then Dw
Λ′,Λ(M) is generated by the

sheaf-theoretical linking disk D(x,ξ) for smooth Legendrian points (x, ξ) ∈ Λ′ \ Λ.

Proof. Let F ∈ wshΛ(M). We assume that SS∞(F ) is a subanalytic isotropic and pick a
Whitney triangulation T such that SS∞(F ) ⊆ N∗∞T. Fixed a particular way to construct
F out of sheaves of the form Mstar(t) for some M ∈ V0 by taking finite steps of cofibers
and use {Fi}{i∈A} to denote those Mstar(t)’s which show up in these steps. Note that it is
possible that their microsupport SS∞(Fi) intersect Λ. However, we see from the proof of
Lemma 6.2.6, the microsupport SS∞(Fi) of these Fi’s are smooth Legendrians in S∗M . Thus,
we can apply Lemma 6.2.8 and assume SS∞(Fi) ∩ Λ′ = ∅ for i ∈ A. By the microsupport
triangular inequality (1) of Proposition 3.2.11, the sheaves appear in the the cofiber sequences
which build F from these Fi’s do not intersect Λ′ as well. In particular, SS∞(F ) ∩ Λ′ = ∅.
Similarly, an application of Lemma 6.2.8 implies that we can assume the existence of a cofinal
wrapping sequence F → Fw1 → Fw2 → · · · such that SS∞(Fwn)∩Λ′ = ∅. This implies that
the canonical map

w̃shΛ′(M)/
(
CΛ(M) ∩ w̃shΛ′(M)

)
→ wshΛ(M) := w̃shΛ(M)/CΛ(M)

is an equivalence. Thus, we can apply Lemma 2.4.4 to the diagram
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CΛ′(M) w̃shΛ′(M) wshΛ′(M)

CΛ(M) ∩ w̃shΛ′(M) w̃shΛ′(M) wshΛ(M)

i p

j q

which implies that Dw
Λ′,Λ(M) =

(
CΛ(M) ∩ w̃shΛ′(M)

)
/CΛ′(M). Now CΛ(M) is the category

generated by the cofibers cof(c(Ψ, F )) of continuation maps whose wrapping ψt(SS∞(F ))

avoids Λ, and CΛ(M) ∩ w̃shΛ′(M) is generated by a similar construction except we now
only requires the end points to avoid Λ. The claim is that the quotient is generated by the
sheaf-theoretic linking disks D(x,ξ) for smooth Legendrian points (x, ξ) ∈ Λ′ \ Λ.

Lemma 2.2.11 implies that if H1 → H2 → H3 is a cofiber sequence, then cof(c(Ψ, H1))→
cof(c(Ψ, H2))→ cof((c(Ψ, H3)) is also a fiber sequence. Thus, it is enough to assume F has
smooth Legendrian microsupport by the discussion at the beginning of the proof. Let Ψ be a
positive isotopy such that ψt(SS∞(F )) does not touch Λ and, by general position argument,
we may assume ψt(SS∞(F )) touches Λ′ for finitely many times and transversally through one
point p ∈ Λ′ \ Λ each time. Decomposing Ψ to Ψ = Ψk# · · ·#Ψ1 so that passing happens
only once during the duration of each Ψi. Since c(Ψ) = c(Ψk) ◦ · · · ◦ c(Ψ1), it is sufficient
to prove the case when only one such passing at (x, ξ) appears by induction with Lemma
2.2.11.

Let q ∈ SS∞(F ) be the point so that the path ψt(q) pass (x, ξ) ∈ Λ′ and U small open ball
near q in S∗M . We again decompose Ψ to Ψ = Ψ+#Ψ0#Ψ− such that there’s no passing
happing during Ψ± and Ψ0 only moves points in U . In this case, c(Ψ±, F ) are isomorphisms
and we can further assume Ψ only moves points in U . Now set Ft = (K(Ψ) ◦ F )|M×{t} so
SS∞(Ft) = ψt (SS∞(F )). We use one last general position argument to assume the front
projection π∞ : SS∞(Ft)→ π∞(SS∞(Ft)) is finite near ψt(U) so π(U ∩ SS∞(Ft)) ⊆ π(U) is a
hyperplane. Thus, we reduce to the local picture defining D(x,ξ) discussed in the last Remark
6.2.10.

We combine the above two results to deduce a generation result for a special case. Let
S be a Whitney triangulation. For each stratum s ∈ S, we pick a small ball Bs which
centered at Xs and contained in star(s) such that N∗∞,outBs ∩N∗∞S = ∅ and consider 1Bs ∈
wshN∗∞,outS(M). This is possible because of the Whitney condition. Again different choices
of such small balls induce the same objects in wshN∗∞S(M) since they are isotopic to each
other in the base by isotopies respecting the stratification and the lifting isotopies on the
microsupport won’t touch N∗∞(S). (See [39])

Proposition 6.2.12. The set {1Bs}s∈S generates wshN∗∞S(M) under finite colimits and re-
tractions.

Proof. Set S≤k = {s ∈ S| dimXs ≤ k}. We claim, when k < n − 1, {1Bs}s∈S≤k plus 1B for

any small ball B whose closure B is disjoint from any stratum of dimension ≤ k generates
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wshN∗∞S≤k(M). To see this, we note that the case k = −1 is Lemma 6.2.6. Assume the case
for k < n − 2 and consider the projection wshN∗∞S≤k(M) � wshN∗∞S≤k−1

(M). We note that
M \ ∪s∈Sk+1

Xs is path connected by standard Hausdorff dimension theory since these Xs’s
have codimension ≥ 2. Thus, 1B is independent of the choice of B. By Proposition 6.2.11,
the fiber of the above projection is generated under finite colimits and retracts by sheaf-
theoretic linking disks D(x,ξ) for (x, ξ) ∈ N∗∞S≤k+1 \ N∗∞S≤k. But D(x,ξ) can be written as
the cofiber cof(1B → 1Bs) by the local picture mentioned in Remark 6.2.10. Finally, apply
a similar argument to the projection wshN∗∞S(M) = wshN∗∞S≤n−1

(M) → wshN∗∞S≤n−2
(M)

implies the proposition.

Recall in the proof of Lemma 6.2.6, we show that 1Bs → 1star(s) is an isomorphism in
wsh∅(M). The later object is, however, not an object in wshN∗∞S(M). Instead, we consider
the object 1star(s)− where star(s)− is a small inward cornering of star(s) of Definition 3.3.9.
Choose Bs small so that Bs ⊆ star(s)−. We claim that the canonical map 1Bs → 1star(s)− is
an isomorphism. By the Yoneda embedding, it is an isomorphism if the corresponding mor-
phism Homw(−, 1Bs)→ Homw(−, 1star(s)−) is an isomorphism as presheaves on wshN∗∞S(M).
The following statements are in directly parallel with Proposition 5.18, Lemma 5.21, and
Proposition 5.24 in [21].

Lemma 6.2.13. For a S-constructible relatively compact open set U , we have

Homw(1Bs , 1U−) =

{
1 star(s) ⊆ U

0 otherwise

Proof. The construction of U− tautologically provides a cofinal sequence 1U−ε so

Homw(1Bs , 1U−) = colim
ε→0

Hom(1Bs , 1U−ε).

First consider the case when star(s) ⊆ U . Since Bs ⊆ star(s) has a non-zero distance from
∂U , it is contained in U−ε for ε << 1 and the left hand side is 1. When star(s)∩U = ∅, the
Hom is clearly 0 so we assume s is a stratum on the boundary of U . In this case, one can
conclude the result by refining the wrapping to a family U−ε,−δ where we add the centered
of the ball Bs to the stratification and δ denotes the parameter which corresponds to this
new stratum. See [21, Proposition 2.10].

Proposition 6.2.14. The canonical map 1Bs → 1star(s)− is an isomorphism in wshN∗∞S(M).

Proof. We proceed by induction on the codimension of s. When s has codimension zero, we
may replacing M by star(s) and it becomes Lemma 6.2.6.

Now the previous lemma and the proposition 6.2.12 implies

Hom(1Bs , 1star(t)−) = Hom(1star(s)− , 1star(t)−) = 0

for t of strictly smaller codimension than s. By induction, 1Bt
∼−→ 1star(t)− for such t’s. The

later generates a subcategory which contains the fiber of the projection wshN∗∞S(T
∗M) →

wshN∗∞S≤dim s
(T ∗M). This implies that it is enough to show the isomorphism in the category

wshN∗∞S≤dim s
(T ∗M). This is a special case fo the following lemma applying to the case

Y = star(s)−, X = s ∩ star(s)−, and Z = t ∩ star(s)−.
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Lemma 6.2.15. Let Xm ⊆ Y n be an inclusion of stable balls, with ∂X ⊆ ∂Y . Assume there
exists another stable ball (with corners) Zm+1 ⊆ Y n such that ∂Z is the union of X with
a smooth submanifold of ∂Y . Then the canonical map 1Bε(x) → 1Y is an isomorphism in
wshN∗∞X(Y ) for any x ∈ X.

Proof. Reduce to the case of balls by stabilization. In this case, Y is a unit ball, X is
the intersection of Y with a linear subspace, and Z is the intersection of Y with a closed
half-plane with the boundary being the linear subspace. The positive isotopy which expands
1Bε(x) to 1Y is disjoint from N∗∞X.

Corollary 6.2.16. The set {1star(s)−}s∈S generates wshN∗∞S(M) under finite colimits and
retractions.
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Chapter 7

The comparison morphism

Let M be a real analytic manifold and Λ ⊆ S∗M a subanalytic singular isotropic. We define
in this section, by an abuse of notation, a comparison functor

W+
Λ(M) : wshΛ(M)→ ShΛ(M)c

and show that it is an equivalence of category. Since such functors combine to a comparison
morphism W+

Λ : wshΛ → ShcΛ between precosheaves, the last statement will implies that
wshΛ is in particular a cosheaf for this case.

7.1 Definition

Let Λ ⊆ S∗M be a closed singular isotropic subset. Recall from Proposition 1.0.4 that the
inclusion ShΛ(M) ↪→ Sh(M) has a left adjoint given by the positive infinite wrapping functor

W+
Λ(M) : Sh(M)→ ShΛ(M).

Geometrically, it takes a sheaf F to the limiting object over increasingly positive wrappings.
Since a continuation map c : F → Fw tautologically becomes an isomorphism after applying
W+

Λ(M), the functor W+
Λ(M) vanishes on CΛ(M). We abuse the notation and denote the

resulting functor on the quotient category also by

W+
Λ(M) : wshΛ(M)→ ShΛ(M).

Remark 7.1.1. We note that in general when Λ is not a singular isotropic, the category on
the right hand side is much larger. For example, when Λ = S∗M and M is non-compact,
W+

S∗M(M) is the trivial inclusion {0} ↪→ Sh(M).

We first notice that in this case the restriction of W+
Λ(M) on wshΛ(M) takes image in

the subcategory consisting of compact objects.

Lemma 7.1.2. Let Λ be a subanalytic singular isotropic. For F ∈ wshΛ(M), the sheaf
W+

Λ(M)(F ) is a compact object.
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Proof. Let F ∈ wshΛ(M) and lim−→Fi be a filtered colimit in ShΛ(M). We compute,

Hom(W+
Λ(M)(F ), lim−→Fi) = colim

Φ∈W (S∗M\Λ)
Hom(w(Φ) ◦ F, lim−→Fi)

= colim
Φ∈W (S∗M\Λ)

Hom(F,w(Φ−1) ◦ lim−→Fi)

= colim
Φ∈W (S∗M\Λ)

Hom
(
F, lim−→(w(Φ−1) ◦ Fi)

)
= colim

Φ∈W (S∗M\Λ)
Hom(F, lim−→Fi) = Hom(F, lim−→Fi).

For the last equality, we use the fact that Φ is supported away from Λ ⊇ SS∞(Fi) so
w(Φ−1) ◦ Fi = Fi by Lemma 4.3.11. Now pick a Whitney triangulation S such that F is S-
constructible and Λ ⊆ N∗S. In this case, the Hom can be computed in ShN∗∞S(M) = S -Mod.
Since ShN∗∞S(M)c consists exactly objects with compact support and perfect stalks, F is
compact in ShN∗∞S(M). Thus Hom(F, lim−→Fi) = lim−→Hom(F, Fi) and a backward computation
as above implies that

Hom(W+
Λ(M)(F ), lim−→Fi) = lim−→Hom(W+

Λ(M)(F ), Fi)

so W+
Λ(M)(F ) ∈ ShΛ(M)c is compact.

We note that this map is compatible with the precosheaf structure on both side.

Lemma 7.1.3. Let j : U ⊆M be an open set. The restriction j∗ : ShΛ(M)→ ShΛ|U (U) has
left and right adjoints which are given by W+

Λ ◦ j! and W−
Λ ◦ j∗. Hence, taking left adjoint

induces a functor W+
Λ ◦ j! : ShΛ|U (U)c → ShΛ(M)c between compact objects.

Proof. We use the fact that the left adjoint of a left adjoint preserves compact objects.

Note when Ω ⊆ Ω′, there is equivalence W+(Ω′)◦W+(Ω) = W+(Ω)◦W+(Ω′) = W+(Ω′).
Thus, by the above lemma, there is commuting diagram for an inclusion of opens j : U ↪→ V :

wshΛ(U) ShΛ|U (U)c

wshΛ(V ) ShΛ|V (V )c

W+
Λ|U (U)

W+
Λ|V (V )

j! W+
Λ|V (V ) ◦ j!

Definition 7.1.4. We will refer the morphism W+
Λ : wshΛ → ShcΛ between precosheaves

defined by the above diagram as the comparison morphism.

Similarly, when Λ ⊆ Λ′, recall the left adjoint of the inclusion ShΛ(M) ↪→ ShΛ′(M) is
given by W+

Λ(M) and thus there is a commuting diagram:
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wshΛ′(M) ShΛ′(M)c

wshΛ(M) ShΛ(M)c

W+
Λ′(M)

W+
Λ′(M)

W+
Λ(M)

One can see this is compatible with the corestrictions on both side. Thus, there is a
commuting diagram in precosheaves with coefficient in stw:

wshΛ′ ShcΛ′

wshΛ ShcΛ

W+
Λ

W+
Λ′

.

The main theorem of this paper, Theorem 1.0.5, is that the comparison functor

W+
Λ(M) : wshΛ(M)→ ShΛ(M)

is an equivalence. As a corollary, the comparison morphism

W+
Λ : wshΛ → ShcΛ

is an isomorphism so, in particular, wshΛ is a cosheaf since ShcΛ is.

7.2 Sufficient condition for fully faithfulness

For the rest of the section, we work with a fixed pair (M,Λ) such that Λ ⊆ S∗M is a
subanalytic singular isotropic. We would like to study the effect of W+

Λ on the Hom. Since
W+

Λ is defined by a colimit, the canonical Homw(G,F )→ Hom(W+
ΛG,W

+
ΛF ) can be obtained

from the following few steps. By definition of colimits, there is a canonical map colimiting
continuation map Fw → W+

ΛF for any wrapping w. This induces, for any other wrapping
w′, a map between the Hom’s Hom(Gw′ , Fw) → Hom(Gw′ ,W+

ΛF ). Since convoluting with
w(Φ) is an auto-equivalence on Sh(M), there is a canonical map

Hom(G,Fw) = Hom(Gw′ , (Fw)w
′
)→ Hom(Gw′ ,W+

Λ(F )).

Take limit over w′ and then colimit over w, we obtain the map between Hom’s

Homw(G,F ) = colim
w

Hom(G,Fw)→ lim
w′

Hom(Gw′ ,W+
Λ(F )) = Hom(W+

Λ(G),W+
Λ(F )).

In short, we have the following lemma.
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Lemma 7.2.1. Running F and G through a set of generators of wshΛ(M). If the limit-
ing continuation map F → W+

ΛF becomes an isomorphism after applying Hom(G,−) for
all such G, then the canonical map on Hom Homw(G,F ) → Hom(W+

Λ(G),W+
Λ(F )) is an

isomorphism for any F,G ∈ wshΛ(M).

Pick any cofinal functor Ψ : Z≥0 → W (S∗M \ Λ) which corresponds to a sequence of

wrappings id
Ψ0−→ Φ1

Ψ1−→ Φ2 → · · · . For convenience, we scale it so that Ψi has domain
S∗M × [i, i + 1]. This sequence of positive family of isotopies patches to a positive isotopy
Ψ : S∗M × [0,∞)→ S∗M whose restriction on S∗M × [i, i+ 1] is Ψi#Φi. Note that Ψ has a
non-compact support by the cofinal criterion Lemma 4.3.9. By the GKS sheaf quantization,
there is a sheaf kernel K(Ψ) on M ×M × [0,∞) such that K(Ψ)|M×M×[i,i+1] = K(Ψi). For

F ∈ w̃shΛ(M), we write FΨ = K(Ψ)◦F and let Fwn denote Fw(Φn) = FΨ|M×{n} the resulting
sheaves under the wrapping Ψ. it is enough to study the morphism

Hom(G,Fwn)→ Hom(G,W+
Λ(F ))

which is induced from the sequence of wrappings

F → Fw1 → · · · → Fwn → · · · →W+
Λ(F ).

Definition 7.2.2. Let X be a topological space, j : X × R ↪→ X × (−∞,∞] and i :
X × {∞} → X × (−∞,∞] be the inclusions as open and closed subset. We call the
composition ψ = i∗ ◦ j∗ : Sh(X × (−∞,∞))→ Sh(X) the nearby cycle functor.

Lemma 7.2.3. The colimit W+
ΛF can be computed as the nearby cycle at infinity of the

sheaf FΨ. That is, W+
ΛF = ψFΨ.

Proof. Since Ψn are cofinal, W+
Λ(F ) = colim

n∈N
Fwn . By the construction above, for each

n > 1, Fwn is given by 1{n} ◦ FΨ ∼−→ 1(0,n)[1] ◦ FΨ and the continuation map between
them is induced by 1(0,n) → 1(0,m) for m ≥ n. Since convolution commutes with colimit,
W+

Λ(F ) = (colim
n∈N

1(0,n)[1]) ◦ FΨ = 1(0,∞)[1] ◦ FΨ = p!F
Ψ[1] where p : M × [0,∞)→M is the

projection. The latter is the same as ψFΨ = i∗j∗F
Ψ by Lemma 4.1.1 because Ψ is a positive

isotopy and so SS(FΨ) ⊆ {τ ≤ 0}.

To study the (co)limiting continuation map Hom(G,F ) → Hom(G,ψFΨ), we use a
similar trick as in Proposition 4.2.8 and consider the object Hom(p∗G,FΨ) where we use
p : M ×R→M to denote the projection. This time, we have to study its behavior near the
infinity.

Lemma 7.2.4. Let F,G ∈ Sh(M × R) be sheaves on M × R such that F and Hom(G,F )
are R-noncharacteristic, and q is proper on supp(G) and supp(ψG) is compact. Then
Hom(i∗sG, i

∗
sF ) is contant on s ∈ R and equals to Γ (M ;ψHom(G,F ))

Proof. The statement over R follows from Lemma 4.1.7. Since we assume supp(ψ(G)) is
proper, we can apply base change on the lager space M × (−∞,∞] to obtain the statement
for Γ (M ;ψHom(G,F )) since ∗-push of (a, b) ↪→ [a, b] sends constant sheaves to constant
sheaves.
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Since ∞ is a boundary point, we cannot conclude the equivalence using transversality.
Such situation is considered by Nadler and Shende in [43] where they developed the theory
of nearby cycle to study the canonical map

Γ (M ;ψHom(G,F ))→ Hom(ψG,ψF )

which we recall now.

Definition 7.2.5 ([43, Definition 2.2]). A closed subset X ⊆ S∗M is positively displaceable
from legendrians (pdfl) if given any Legendrian submanifold L (compact in a neighborhood
of X), there is a 1-parameter positive family of Legendrians Ls, s ∈ (−ε, ε) (constant outside
a compact set), such that Ls is disjoint from X except at s = 0.

Definition 7.2.6 ([43, Definition 2.7]). Fix a co-oriented contact manifold (V , ξ) and positive
contact isotopy ηs. For any subset Y ⊆ V we write Y [s] := ηs(Y ). Given Y, Y ′ ⊆ V we define
the chord length spectrum of the pair to be the set lengths of Reeb trajectories from Y to
Y ′:

cls(Y → Y ′) = {s ∈ R|Y [s] ∩ Y ′ 6= ∅}
we term cls(Y ) := cl(Y → Y ) the chord length spectrum of Y .

Definition 7.2.7 ([43, Definition 2.9]). Given a parameterized family of pairs (Yb, Y
′
b ) in

S∗M over b ∈ B we say it is gapped if there is some interval (0, ε) uniformly avoided by all
cl(Yb → Y ′b ). In case Y = Y ′, we simply say Y is gapped.

Definition 7.2.8 ([43, Definition 3.17]). Given a subset X ⊆ T ∗(M × J), we define its
nearby subset by

ψ(X) := Π(X) ∩ T ∗(M × (−1,∞])|M×{∞}.

The main theorem for the nearby cycles in [43] is the following:

Theorem 7.2.9 ([43, Theorem 4.2]). Let F , G be sheaves on M × J . Assume

1. SS(F ) and SS(G) are J-noncharacteristic;

2. ψ(SS(F )) and ψ(SS(G)) are pdfl;

3. The family of pairs in S∗M determined by (SSπ(F ), SSπ(G)) is gapped for some fixed
contact form on S∗M .

Then
Γ(M ;ψHom(F,G))→ Hom(ψ(F ), ψ(G))

is an isomorphism.

Now we apply the theory of nearby cycle to the infinite wrapping functor.

Lemma 7.2.10. Let F → Fw1 → Fw2 → · · · be a sequence in w̃shΛ(M) as in Lemma 7.2.3.
If for any conic open neighborhood U of Λ, there exists n such that SS(Fwn) ⊆ U . Then the
sequence is cofinal.
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Proof. Pick a decreasing conic open neighborhood U1 ⊇ U2 ⊇ U3 ⊇ · · · ⊇ Λ of Λ such
that Un ⊆ Un+1 and ∩n Un = Λ. By taking a subsequence of the Fwn ’s, we may assume
SS(Fwn) ⊆ Un for n ≥ 1. Again by taking a subsequence of both the Fwn ’s and Un’s, we
may further assume Un+1 ∩ SS(Fwn) = ∅. By the locality property 4.3.11, the continuation
map c : Fwn → Fwn+1 depends only on the value of Ψ on Un. Thus, we may modify Ψ on
T ∗M \Un−1 to satisfy the condition in Lemma 4.3.9. Since taking subsequence won’t change
the colimit, the original sequence is cofinal.

Theorem 7.2.11. Let F ∈ w̃shΛ(M). Assume there is a sequence of wrappings

Φ0
Ψ0−→ Φ1 → · · ·

which glues to a (non-compactly supported) positive contact isotopy Ψ : S∗M × [0,∞) →
S∗M such that, for any neighborhood U of Λ, ψs(SS∞(F )) ⊆ U for s >> 0. Then for

G ∈ w̃shΛ(M) the canonical map,

Hom(G,Fwn)→ Hom(G,ψFΨ)

is an isomorphism for n >> 0. Thus, the canonical map

Homw(G,F )→ Hom(W+
ΛG,W

+
ΛF )

is an isomorphism.

Proof. By Lemma 4.3.9, the sequence Fwn is cofinal and W+
ΛF is computed by colim

n∈N
Fwn .

Thus, the first statement implies that W+
Λ induces isomorphisms on the Hom by Lemma

7.2.1.
Now note that SS∞(G) in S∗M is compact since supp(G) is compact and the front

projection π∞ : S∗M →M is proper. Since a manifold is in particular a regular topological
space, there exist open sets U and V containing Λ and SS∞(G) such that U ∩ V = ∅.
By restricting to n >> 0, we may assume ψs(SS∞(F )) ⊆ U is thus disjoint from SS∞(G),
which implies that Hom(p∗G,FΨ) is J-noncharacteristic. Lemma 7.2.4 then implies that
Hom(G,Fwn) = Γ(M ;ψHom(p∗G,FΨ)).

So it is sufficient to check the conditions of Theorem 7.2.9 hold for the pair p∗G and
FΨ. The set SS(p∗G) = SS(G)× 0J is tautologically J-noncharacteristic. For FΨ, we recall
that ṠS(FΨ) = ΛΨ ◦ F = {(Ψ(x, ξ, t)|(x, ξ) ∈ ṠS(F ), t ∈ [0,∞)} which implies that FΨ is
J-noncharacteristic.

By picking a shrinking neighborhood Vn of Λ, we see that the nearby set ψ(SS∞(FΨ))
is contained in Λ. One can pick a Whitney triangulation S such that Λ ⊆ N∗∞S. Similarly,
up to an isotopy, there exists a Whitney triangulation T such that SS∞(G) ⊆ N∗∞T. The
singular isotropics N∗∞S and N∗∞T are pdfl by Lemma 6.2.8.

Now the same argument showing Hom(p∗G,FΨ) is J-noncharacteristic implies that there
is an N ∈ N such that ψs(SS∞(F )) ⊆ V for s ≥ N . Thus, when restricting to M × [N,∞),
p∗G and FΨ are microlocally disjoint and the gapped condition is tautologically satisfied.
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Corollary 7.2.12. If there exists a generating set S in w̃shΛ(M) such that each F ∈ S
admits a sequence Fwn constructed in the above manner such that SS∞(Fwn) is contained in
arbitrary small neighborhood of Λ for n large, then the comparison functor

W+
Λ : wshΛ(M) ↪→ ShΛ(M)c

is fully faithful.

7.3 Proof of the main theorem

We first consider the special case when Λ = N∗∞S for some Whitney triangulation S.

Theorem 7.3.1. The comparison functor W+
N∗∞S : wshN∗∞S(M)→ ShN∗∞S(M)c is an equiva-

lence.

Proof. By Proposition 6.2.6 and Proposition 6.2.14, wshS(M) has {1star(s)−} as a set of
generators. Recall that 1star(s)− is defined to be an unspecified inward cornering star(s)−ε for
small enough ε. As mentioned in Definition 3.3.9, the construction of star(s)−ε is made so
that N∗∞,out star(s)−ε is disjoint from N∗∞S and is contained in arbitrary small neighborhood
of N∗∞S as ε→ 0. Since SS(1star(s)−ε) = N∗∞,out (star(s)−ε), Theorem 7.2.11 applies and W+

N∗∞S

is fully faithful. We see from the same generators 1star(s)− that W+
N∗∞S is essential surjective

since {1star(s)} form a set of generators of ShN∗∞S(M)c by Proposition 3.3.10.

To prove the general case, we have to match a special class of objects on both sides. The
following lemma is a sheaf-theoretic variant of the proof [21, Theorem 5.36].

Lemma 7.3.2. Let Λ be a subanalytic singular isotropic and (x, ξ) ∈ Λ be a smooth point.
For any F ∈ Sh(M) such that SS(F ) is contained in Λ near (x, ξ), there is an equivalence

Hom(W+
ΛD(x,ξ), F ) = µ(x,ξ)F.

That is, the object W+
ΛD(x,ξ) co-represents µ(x,ξ).

Proof. Recall D(x,ξ) is defined to be the cofiber of the canonical map 1f−1(−∞,−ε) → 1f−1(−∞,ε)
where f is a proper analytic function defined near x satisfying the following conditions: There
exists an ε > 0, so that f has only one Λ-critical point x over f−1[−ε, ε] with f(x) = 0,
dfx = ξ and f−1(−∞, ε) is relatively compact. Proposition 3.2.7 implies the function f
defines a microstalk functor µ(x,ξ), by

µ(x,ξ)(F ) := Γ{f≥0}(F )x.

As in Remark 6.2.10, the local picture of the fibers f−1({t}) for t ∈ [−ε, ε] is a hyperplane
near x. Let Ψ denote any global extension of the wrapping N∗∞,outf

−1(−∞, t) for t ∈ [−ε, ε].
If we modify Ψ to Ψ0 by multiplying a bump function supported near (x, ξ) on its Hamil-
tonian, the resulting wrapping (1f−1(−∞,ε))

Ψ0 will appear as expanding f−1(−∞, ε) to some
large open set where the expansion happens only near x in the ξ codirection. The cofiber
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cof
(
c(Ψ0, 1f−1(−∞,ε))

)
can be seen as the cofiber induced by some small open neighborhood

U and its open subset U ∩ 1f−1(−∞,ε).

Since the graph Γdf does not intersection Λ except at (x, ξ), there is an isomoprhism
Γ(f−1(−∞, ε);F ) = Γ(f−1(−∞, 0);F ) by the non-characteristic deformation lemma 3.1.13.
Thus, Γ{f≥0}(F )x can be computed as a colimit

Γ{f≥0}(F )x = colim
Ψ0

Hom(cof
(
1f−1(−∞,0) → (1f−1(−∞,0))

w(Φ0)
)
, F )

= colim
Ψ0

Hom(cof
(
1f−1(−∞,ε) → (1f−1(−∞,0))

w(Φ0)
)
, F )

by picking Ψ0 so that the corresponding U as above forms a neighborhood basis of x. Sim-
ilarly, Hom((1f−1(−∞,0))

w, F ) can be replaced by Γ(f−1(−∞, ε);F ) such that the maps are
compatible with inclusions of the corresponding open sets. That is, we are taking colimit
over a constant functor and thus

Γ{f≥0}(F )x = colim
Ψ0

Hom(cof
(
1f−1(−∞,ε) → (1f−1(−∞,0))

w(Φ0)
)
, F )

= colim
Ψ0

Hom(cof(1f−1(−∞,−ε) → 1f−1(−∞,ε)), F )

= Hom(cof(1f−1(−∞,−ε) → 1f−1(−∞,ε)), F ) = Hom(D(x,ξ), F )

Finally, we recall that W+
Λ is defined by the restriction of the left adjoint of the tau-

tological inclusion ShΛ(M) ↪→ Sh(M) on w̃shΛ(M), and we conclude that Γ{f≥0}(F )x =
Hom(W+

ΛD(x,ξ), F ).

Remark 7.3.3. Corepresentatives of the microstalk functors µ(x,ξ) : ShΛ(M) → V are fre-
quently considered since they often provide a preferred set of generators. For example, Zhou
in [58] finds an explicit description of corepresentatives in the case of FLTZ skeleton first
considered in [14], and uses it to match them with certain line bundles on the coherent
side, which gives an explicit description to the equivalence proved in [33] through descent
argument. A common recipe for finding such a description is to first find a sheaf F which is
constructed locally near x, and is thus not necessarily in ShΛ(M), but still satisfies the iden-
tification Hom(F,−) = µ(x,ξ) on ShΛ(M). Then one constructs a one-parameter family of
sheaves Ft, t ∈ [0, 1], such that F0 = F , F1 ∈ ShΛ(M), and Hom(Ft,−) remains constant as
t varies. This lemma can be seen as an abstraction for such a construction when subanalytic
structure is presented.

88



Proof of Theorem 1.0.5. Pick a Whitney triangulation S such that Λ ⊆ N∗∞S. We use
Dw
N∗∞S,Λ(M) denote to the subcategory in wshN∗∞S(M) generated by the sheaf-theoretical link-

ing discs D(x,ξ) at Legendrian points of N∗∞S \Λ and, similarly, Dµ
N∗∞S,Λ(M) the subcategory

in ShN∗∞S(M) generated by the corresponding microstalk representatives. By Proposition
3.4.10 and Proposition 6.2.11, they are the fiber of the projections wshN∗∞S(M)→ wshΛ(M)
and ShN∗∞S(M)c → ShΛ(M)c respectively. Thus, there is a commuting diagram

Dw
N∗∞S,Λ(M) wshN∗∞S(M) wshΛ(M)

Dµ
N∗∞S,Λ(M) ShN∗∞S(M)c ShΛ(M)c

W+
N∗∞S W+

Λ

.

The last lemma implies that the equivalence W+
N∗∞S : wshS(T

∗M)
∼−→ ShS(M)c restricts to

W+
N∗∞S : Dw

N∗∞S,Λ(M)
∼−→ Dµ

N∗∞S,Λ(M).

Hence, Lemma 2.4.4 implies that W+
Λ is an equivalence as well.
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[6] Shaoyun Bai and Laurent Côté. On the Rouquier dimension of wrapped Fukaya cate-
gories. arXiv:2110.10663, 2021.

[7] David Ben-Zvi, John Francis, and David Nadler. Integral transforms and Drinfeld
centers in derived algebraic geometry. J. Amer. Math. Soc., 23(4):909–966, 2010.

[8] Roger Casals and Honghao Gao. Infinitely many lagrangian fillings. arXiv:2001.01334,
2020.

[9] Roger Casals and Eric Zaslow. Legendrian weaves: N-graph calculus, flag moduli and
applications. arXiv:2007.04943, 2020.

[10] Sheng-Fu Chiu. Nonsqueezing property of contact balls. Duke Mathematical Journal,
166(4):605–655, 2017.

[11] Sheng-Fu Chiu. Quantum speed limit and categorical energy relative to microlocal
projector. arXiv:2111.05144v2, 2022.

[12] Lee Cohn. Differential graded categories are k-linear stable infinity categories.
arXiv:1308.2587, 2013.

[13] Ma l gorzata Czapla. Definable triangulations with regularity conditions. Geom. Topol.,
16(4):2067–2095, 2012.

90

https://arxiv.org/abs/1309.5035v2
https://arxiv.org/abs/2005.05088
https://arxiv.org/abs/2110.10663v1
https://arxiv.org/abs/2001.01334
https://arxiv.org/abs/2007.04943
https://arxiv.org/abs/2111.05144
https://arxiv.org/abs/1308.2587


[14] Bohan Fang, Chiu-Chu Melissa Liu, David Treumann, and Eric Zaslow. A categorifica-
tion of Morelli’s theorem. Invent. Math., 186(1):79–114, 2011.

[15] Dennis Gaitsgory. Ind-coherent sheaves. arXiv:1105.4857v7, 2012.

[16] Dennis Gaitsgory and Nick Rozenblyum. A study in derived algebraic geometry. Vol.
I. Correspondences and duality, volume 221 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2017.

[17] Benjamin Gammage and Vivek Shende. Homological mirror symmetry at large volume.
arXiv:2104.11129, 2021.

[18] Benjamin Gammage and Vivek Shende. Mirror symmetry for very affine hypersurfaces.
arXiv:1707.02959v3, 2021.

[19] Sheel Ganatra, John Pardon, and Vivek Shende. Sectorial descent for wrapped Fukaya
categories. arXiv:1809.03427v2, 2019.

[20] Sheel Ganatra, John Pardon, and Vivek Shende. Covariantly functorial wrapped Floer
theory on Liouville sectors. Publ. Math. Inst. Hautes Études Sci., 131:73–200, 2020.

[21] Sheel Ganatra, John Pardon, and Vivek Shende. Microlocal Morse theory of wrapped
Fukaya categories. arXiv:1809.08807v2, 2020.

[22] Mark Goresky and Robert MacPherson. Stratified Morse Theory. Springer, 1988.
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