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Intro

The goal of this talk is to introduce a microlocal version of the
Riemann-Hilbert correspondence. This classical correspondence establishes
that, for a complex manifold X , the category of holomorphic vector
bundles with connections Vect∇(X ) is equivalent to the purely topological
category of local systems Loc(X ).

Following the microlocal philosophy, this classical equivalence should be
viewed as living on the zero section X = 0X . We will introduce objects
that generalize both sides, explain the correspondence, and discuss a
microlocal version on the coprojective bundle P∗X .

Our goal is to present a generalization to all complex contact manifolds V .
If time permits, we will discuss an application with possible future
directions toward geometric representation theory. This last part is joint
work with Laurent Côté, David Nadler, and Vivek Shende.
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Intro

Structure of the talk:

Constructible sheaves

D-modules

Microlocalization

To contact manifolds and an application
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Constructible sheaves

Definition

A pre-sheaf F , valued in abelian groups (Ab), is a functor
F : OpopX → (Ab), meaning that there are assignments

U 7→ F (U)

(U ⊆ V ) 7→ (F (V ) → F (U)) .

Definition

A pre-sheaf F is a sheaf if its global data can be reconstructed (glued)
from local pieces. More precisely, the sequence we have the following
exact sequence:

0 −→ F (U) −→
∏
i

F (Ui ) −→
∏
i ,j

F (Uij)

We denote the collection of sheaves by Sh(X ; (Ab)) or simply Sh(X ).
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Constructible sheaves

The way to read the exact sequence
0 −→ F (U) −→

∏
i F (Ui ) −→

∏
i ,j F (Uij) is the following:

Exactness at F (U) means that two sections s1, s2 ∈ F (U) are equal if
their restrictions to each Ui agree.

Exactness at
∏

i F (Ui ) means that a family of sections {si} on the Ui

glues to a section s on U if they agree on all double overlaps Uij

.
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Constructible sheaves

Remark

For technical reasons, at some point during the talk, we will in fact need
sheaves valued in D(Z), chain complexes with quasi-isomorphisms
inverted, (or in a suitable stable coefficient category). In other words, the
target category should be an (∞, 1)-category. A key difference from the
ordinary case is that the gluing

F (U) −→ lim

∏
i

F (Ui ) →→
∏
i ,j

F (Uij)
→→→

∏
i ,j ,k

F (Uijk)
→→→→ · · ·


does not, in general, terminate after finitely many steps.
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Constructible sheaves

Example

Here are some simple examples of sheaves

The sheaf of real-valued continuous function C0
X (U) := C 0(U;R).

Its sub-sheaf of locally integer-valued constant functions ZX .

With adequate smooth structures, C k , real analytic, or holomorphic
functions form the sub-sheaves Ck

X , Cω
X , and OX .

Definition

A sheaf F ∈ Sh(X ) is said to be locally constant if there exists a cover
{Ui} of X such that F |Ui

is constant, i.e., F |Ui
∼= MUi

for some abelian
group M. The subcategory of locally constant sheaf is denoted by Loc(X ).
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Constructible sheaves

Remark

Loc(X ) can equivalently be described as Fun
(
π1(X ), (Ab)

)
, where π1(X )

is the fundamental groupoid of X . In other words, an L ∈ Loc(X )
corresponds to an assignment

(x ∈ X ) 7→ Lx ,

(γ : x ∼ y) 7→ Lx
∼=−−→ Ly .

Example

On C1 \ {0}, a local system is equivalent to the data of an abelian group

A together with a (monodromy) automorphism m : A
∼=−−→ A:
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Constructible sheaves

A generalization of local systems is given by constructible sheaves.

Definition

Let X be a topological space.

A stratification S = {Xα}α∈I is a decomposition of X into a locally
finite disjoint union of the strata X = ⨿α∈IXα.

A sheaf F is said to be S-constructible if F |Xα ∈ Loc(Xα) for all
α ∈ I . The collection of S-constructible sheaves is denoted ShS(X ).

A sheaf F is said to be constructible if F is S-constructible for some
stratification S.

Example

When S = {X} has only one stratum, then ShS(X ) = Loc(X ).

Christopher Kuo Riemann-Hilbert on contact manifolds 9 / 46



Constructible sheaves

A generalization of local systems is given by constructible sheaves.

Definition

Let X be a topological space.

A stratification S = {Xα}α∈I is a decomposition of X into a locally
finite disjoint union of the strata X = ⨿α∈IXα.

A sheaf F is said to be S-constructible if F |Xα ∈ Loc(Xα) for all
α ∈ I . The collection of S-constructible sheaves is denoted ShS(X ).

A sheaf F is said to be constructible if F is S-constructible for some
stratification S.

Example

When S = {X} has only one stratum, then ShS(X ) = Loc(X ).

Christopher Kuo Riemann-Hilbert on contact manifolds 9 / 46



Constructible sheaves

A generalization of local systems is given by constructible sheaves.

Definition

Let X be a topological space.

A stratification S = {Xα}α∈I is a decomposition of X into a locally
finite disjoint union of the strata X = ⨿α∈IXα.

A sheaf F is said to be S-constructible if F |Xα ∈ Loc(Xα) for all
α ∈ I . The collection of S-constructible sheaves is denoted ShS(X ).

A sheaf F is said to be constructible if F is S-constructible for some
stratification S.

Example

When S = {X} has only one stratum, then ShS(X ) = Loc(X ).

Christopher Kuo Riemann-Hilbert on contact manifolds 9 / 46



Constructible sheaves

A generalization of local systems is given by constructible sheaves.

Definition

Let X be a topological space.

A stratification S = {Xα}α∈I is a decomposition of X into a locally
finite disjoint union of the strata X = ⨿α∈IXα.

A sheaf F is said to be S-constructible if F |Xα ∈ Loc(Xα) for all
α ∈ I . The collection of S-constructible sheaves is denoted ShS(X ).

A sheaf F is said to be constructible if F is S-constructible for some
stratification S.

Example

When S = {X} has only one stratum, then ShS(X ) = Loc(X ).

Christopher Kuo Riemann-Hilbert on contact manifolds 9 / 46



Constructible sheaves

A generalization of local systems is given by constructible sheaves.

Definition

Let X be a topological space.

A stratification S = {Xα}α∈I is a decomposition of X into a locally
finite disjoint union of the strata X = ⨿α∈IXα.

A sheaf F is said to be S-constructible if F |Xα ∈ Loc(Xα) for all
α ∈ I . The collection of S-constructible sheaves is denoted ShS(X ).

A sheaf F is said to be constructible if F is S-constructible for some
stratification S.

Example

When S = {X} has only one stratum, then ShS(X ) = Loc(X ).

Christopher Kuo Riemann-Hilbert on contact manifolds 9 / 46



Constructible sheaves

Example (Extension by zero)

For topological space X and open U ⊆ X , define ZU ∈ Sh(X ) by:

ZU(V ) =

{
C 0(V ;Z) if V ⊆ U

0 otherwise

For closed Z = X \ U, define ZZ by the exact sequence:

0 → ZU → ZX → ZZ → 0

Both ZU and ZZ are constructible with respect to the stratification
S = {U,Z}.
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Constructible sheaves

Another class of stratifications with an easy description of ShS(X ) occurs
when all strata are contractible. Define a partial order on S by β ≤ α if
Xα ⊆ Xβ.

Lemma

If all strata in S are contractible, then ShS(X ) = Fun ((S,≤)op, (Ab)).

Example

Consider the unit interval ∆1 = [0, 1] with the stratification
S = {{0}, (0, 1]}. In this case, (0, 1] ≤ {0} since 0 ∈ (0, 1], and ShS(X ) is
given by representations of the quiver {• → •}:
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Constructible sheaves

Example

A similar example is given by the standard 2-simplex ∆2 with strata {0},
(0, 1], and the remainder. In this case, an object has the following shape:

Here, the composition g ◦ f must agree with h.
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Constructible sheaves

Definition

Assume M is a manifold.

If M is real analytic, define ShR-c(M) :=
⋃

S ShS(M), where S ranges
over stratifications whose strata are locally closed subanalytic
submanifolds.

If M is complex analytic, define ShC-c(M) :=
⋃

S ShS(M), where S

ranges over stratifications whose strata are locally closed complex
submanifolds.

Proposition

With mild condition on M, any stratification S can be further refine to a
triangulation T. In this case, ShS(M) can be viewed as a subcategory of
Fun((T,≤), (Ab)).
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D-modules

We now shift gears and let X be a complex manifold of dimension n.
There is a sheaf of rings DX on X whose sections are differential
operators. Locally, in a coordinate system {zi}ni=1, a section has the form

P =
∑
α∈Nn

cα
∂α

∂zα
, cα ∈ OX , cα = 0 for all but finitely many α.

Here, for a multi-index α, we use the notation

∂α

∂zα
=

∂α1

∂zα1
1

· · · ∂αn

∂zαn
n

,

and the multiplication is given by composition.
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D-modules

Definition

A D-module M is a sheaf of modules over DX , and the category of
D-modules on X is denoted by DX -Mod.

Example

The sheaf OX of holomorphic functions is canonically a D-module:

Functions f ∈ OX ⊆ DX act by multiplication

Vector fields v ∈ XX ⊆ DX act by differentiation

Leibniz’s rule extends the action to all of DX

More generally, OX ⊗C E has a D-module structure for any
finite-dimensional complex vector bundle E → X .
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D-modules

Remark

In fact, a more invariant way to view DX is to note that OX and XX , the
sheaf of vector fields, can both be regarded as subsheaves of EndC(OX ),
via multiplication and differentiation, respectively. Then, DX is the subring
generated by OX and XX .
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D-modules

Motivation: Study differential equations using homological algebra.

Construction:

Let P ∈ DX be a differential operator

Define the quotient D-module MP := DX/DX · P

Key observation: Solutions correspond to morphisms:

HomDX
(MP ,OX )(U) = {f ∈ OX (U) | Pf = 0}

The sheaf-Hom gives precisely the solutions of the differential equation P.
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D-modules

Definition

The solution functor Sol : DX -Mod → Sh(X ; VectC) is given by

Sol(M) := HomDX
(M,OX )

Example (Complex line C1)

There is an exact sequence:

0 → DC1

∂
∂z−→ DC1 → OC1 → 0

P 7→ P(1)

Computing solutions: Sol(OC1) consists of f ∈ OX with ∂
∂z f = 0.

Therefore: f = c for c ∈ C, so Sol(OC1) = CC1 .

Christopher Kuo Riemann-Hilbert on contact manifolds 18 / 46



D-modules

Definition

The solution functor Sol : DX -Mod → Sh(X ; VectC) is given by

Sol(M) := HomDX
(M,OX )

Example (Complex line C1)

There is an exact sequence:

0 → DC1

∂
∂z−→ DC1 → OC1 → 0

P 7→ P(1)

Computing solutions: Sol(OC1) consists of f ∈ OX with ∂
∂z f = 0.

Therefore: f = c for c ∈ C, so Sol(OC1) = CC1 .

Christopher Kuo Riemann-Hilbert on contact manifolds 18 / 46



D-modules

Example (Ring of meromorphic functions at 0, OC1(∗0))
For meromorphic functions with a finite pole at 0, we have the resolution:

0 → DC1

∂
∂z

z
−−→ DC1 → OC1(∗0) → 0

We solve ∂
∂z (zf ) = 0, so zf = c for c ∈ C.

Case analysis:

If 0 /∈ U: solutions are f = cz−1

If 0 ∈ U: setting z = 0 gives c = 0, so f = 0

Therefore: Sol(OC1(∗0)) = CC1\{0}.

Key observation: Solution sheaves are constructible - this holds for a
large class of D-modules.
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Microlocalization

Topological setup: Let X be a topological space and F ∈ Sh(X ).

Definition (Support of a sheaf)

The support of F is
supp(F ) = {x | Fx ̸= 0}

Equivalently, supp(F )c is the largest open set U such that F |U = 0.

Limitation: Support is not a refined invariant - it cannot distinguish ZU

and ZU .

Enhancement: When M is a C 2-manifold, there is a more refined notion
which we will define next.
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Microlocalization

Approximate Definition (Part 1)

For F ∈ Sh(M;D(Z)), the microsupport SS(F ) ⊆ T ∗M is a conic closed
subset such that:

SS(F ) ∩ 0M = supp(F )

For (x , ξ) ∈ T ∗M \ 0M : (x , ξ) ̸∈ SS(F ) if and only if locally testing
on small open balls we have

Geometric idea: ξ creates a directional barrier that divides regions.
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Microlocalization

Approximate Definition (Part 2)

Continuing from the previous definition: (x , ξ) ̸∈ SS(F ) means that
sections of F propagate uniquely across the barrier dictated by ξ.

Key insight: ξ is not in the microsupport if sections extend uniquely
across this directional barrier - no ”obstruction” to propagation in the ξ
direction.
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Microlocalization

Example (Local systems have minimal microsupport)

If L ∈ Loc(M) is a local system, then SS(L) = 0M . (The converse is also
true.)
Proof: Reduce to L = ZM on small balls. Restriction from a ball to a
half-ball is always the identity.

Example (Point singularity)

SS(CC1\{0}) = 0C1 ∪ T ∗
0C1
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Microlocalization

Example (Microsupport of extension by zero)

When M is a manifold and U ⊆ M has smooth boundary:
SS(ZU) = N∗

out(U) the outward conormal bundle of U.

Structure of N∗
out(U):

Inside U: the zero section 0M

On ∂U: outward pointing covectors

Proof idea: Let x ∈ ∂U and ξ be an outward conormal at x .

For ball B centered at x : B ̸⊆ U, so ZU(B) = 0

For half-ball Bξ = B ∩ {z | ξ(z) < 0} on the inward side: Bξ ⊆ U, so
ZU(Bξ) = Z
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Microlocalization

Dual construction: For closed Z = X \ U, define ZZ by the exact
sequence: 0 → ZU → ZX → ZZ → 0

Example (Inward conormal)

When ∂U is smooth: SS(ZU) = N∗
in(U) the inward conormal bundle.

Pattern: Microsupport captures the ”singular directions” - where sections
cannot extend uniquely across barriers.
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Microlocalization

Connection: Microsupport is closely related to symplectic geometry of
T ∗M.

Theorem (Kashiwara-Schapira)

Let F ∈ Sh(M) be a sheaf.

(1) Coisotropic property: SS(F ) is coisotropic. If SS(F ) is stratified by
locally closed submanifolds, then SS(F )sm is a coisotropic submanifold.

(2) Constructibility characterization: Assume M is real analytic and
SS(F ) is subanalytic. Then: F is constructible ⇐⇒ SS(F ) is Lagrangian

Key insight: Constructible sheaves correspond to Lagrangian
microsupports - the smallest visible objects according to the uncertainty
principle.
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Microlocalization

Setup: Let π : T ∗X → X be the projection and Ṫ ∗X = T ∗X \ 0X .

Microdifferential operators: There exists a ring ET∗X of
microdifferential operators - a complex conic sheaf on T ∗X .

Definition (Complex conic)

A sheaf F on T ∗M is complex conic if F(Ω) = F(C× · Ω) for open
Ω ⊆ T ∗M.

In particular, ET∗X |Ṫ∗X pulls back from a sheaf EP∗X on P∗X .

Next: We give the local form and structure of these operators.
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Microdifferential operators: There exists a ring ET∗X of
microdifferential operators - a complex conic sheaf on T ∗X .

Definition (Complex conic)

A sheaf F on T ∗M is complex conic if F(Ω) = F(C× · Ω) for open
Ω ⊆ T ∗M.
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Microlocalization

Local form: With coordinates (ξ1, . . . , ξn) for covector directions, sections
P ∈ ET∗X are locally:∑

α∈Zn

cαξ
α, cα ∈ OX , cα = 0 when α ≫ 0

Notation: Infinite terms allowed in negative directions, but bounded
above.

Inclusion: ET∗X contains π∗DX via ∂α

∂zα 7→ ξα.

Composition rule: Extending symbol composition for differential
operators:

P ◦ Q =
∑
α

1

α!
(
∂α

∂ξα
P)(

∂α

∂zα
Q)
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Microlocalization

Example (Composition in ET∗C1)

Basic commutator: In DC1 : [ ∂
∂z , z ] = 1, i.e., ∂

∂z z = 1 + z ∂
∂z .

Viewing in ET∗C1 :

ξ ◦ z = ξ · z + ∂

∂ξ
(ξ) · ∂

∂z
(z) = ξ · z + 1 = 1 + zξ

Infinite series shows up naturally: Over {z ̸= 0, ξ ̸= 0}, consider z−1

and ξ−1:

z−1 ◦ ξ−1 = z−1ξ−1 (simple product)

But ξ−1 ◦ z−1 gives an infinite series as below:

Christopher Kuo Riemann-Hilbert on contact manifolds 29 / 46



Microlocalization

Example (Composition in ET∗C1)

Basic commutator: In DC1 : [ ∂
∂z , z ] = 1, i.e., ∂

∂z z = 1 + z ∂
∂z .

Viewing in ET∗C1 :

ξ ◦ z = ξ · z + ∂

∂ξ
(ξ) · ∂

∂z
(z) = ξ · z + 1 = 1 + zξ

Infinite series shows up naturally: Over {z ̸= 0, ξ ̸= 0}, consider z−1

and ξ−1:

z−1 ◦ ξ−1 = z−1ξ−1 (simple product)

But ξ−1 ◦ z−1 gives an infinite series as below:

Christopher Kuo Riemann-Hilbert on contact manifolds 29 / 46



Microlocalization

Example (Composition in ET∗C1)

Basic commutator: In DC1 : [ ∂
∂z , z ] = 1, i.e., ∂

∂z z = 1 + z ∂
∂z .

Viewing in ET∗C1 :

ξ ◦ z = ξ · z + ∂

∂ξ
(ξ) · ∂

∂z
(z) = ξ · z + 1 = 1 + zξ

Infinite series shows up naturally: Over {z ̸= 0, ξ ̸= 0}, consider z−1

and ξ−1:

z−1 ◦ ξ−1 = z−1ξ−1 (simple product)

But ξ−1 ◦ z−1 gives an infinite series as below:

Christopher Kuo Riemann-Hilbert on contact manifolds 29 / 46



Microlocalization

Example (Infinite series from composition)

As the ◦ is given by

P ◦ Q =
∑
α

1

α!

∂α

∂ξα
P

∂α

∂zα
Q,

computing ξ−1 ◦ z−1 results:

ξ−1 ◦ z−1 =

1

0!
ξ−1z−1 +

1

1!
(
∂

∂ξ
ξ−1)(

∂

∂z
z−1)

+
1

2!
(
∂

∂ξ

2

ξ−1)(
∂

∂z

2

z−1) + · · ·

= ξ−1z−1 + ξ−2z−2 + 2!ξ−3z−3 + · · ·

Observation:

Composition can produce infinite series even from simple
rational functions.
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Microlocalization

Definition (Microlocalization functor)

The microlocalization functor is given by

µ : DX -Mod → ET∗X -Mod

M 7→ ET∗X ⊗π∗DX
π∗M

The characteristic variety of a D-module M is

Ch(M) := supp(µ(M))

Remark

This is equivalent to the usual definition via good filtrations.

Goal: Compute characteristic varieties using exact sequences.
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Microlocalization

Example (Computing characteristic varieties)

Case 1: For OC1 , pullback the exact sequence:

0 → EP∗C1
ξ−→ EP∗C1 → µ(OC1) → 0

Since ξ is invertible away from the zero section: Ch(OC1) = 0C1 .

Case 2: For OC1(∗0):

0 → EP∗C1
ξz−→ EP∗C1 → µ(OC1(∗0)) → 0

Since ξz is invertible iff ξz ̸= 0: Ch(OC1(∗0)) = 0C1 ∪ T ∗
0C1.
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Microlocalization

Key observation: The characteristic varieties we computed coincide with
microsupports from earlier examples!

Enhanced solution functor: Extend Sol to the derived category:

Db
coh(DX ) → Sh(X ;D(C))

M 7→ RHomDX
(M,OX )

(Here Sh(X ;D(Z)) means sheaves valued in chain complexes of C-vector
spaces with quasi-equivalence being inverted.)

Theorem (Kashiwara-Schapira)

If M ∈ DX -Mod is coherent, then: SS(Sol(M)) = Ch(M)
In particular, if Ch(M) is a complex Lagrangian, then Sol(M) ∈ ShC-c(X ).
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Microlocalization

Definition (Holonomic D-modules)

For coherent M ∈ DX -Mod: M is holonomic if Ch(M) is Lagrangian.
For M ∈ Db

coh(DX ): M is holonomic if all Hk(M) are holonomic.

Regular singularities: A holonomic D-module is regular if formal
solutions converge. (The precise definition is technical.)

Theorem (Riemann-Hilbert correspondence (Kashiwara, Mebkhout))

The solution functor gives equivalences:

Derived level:
Sol : Db

rh(DX )
∼−→ ShC-c(X )b.

Abelian level:
Sol : DX -Modrh

∼−→ Perv(X )

where Perv(X ) is the category of perverse sheaves.
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Microlocalization

Goal: Define microlocalization for sheaves (topological side).

Difference: No ring to localize - instead, localize the category directly.

Setup: For closed X ⊆ T ∗M, define: ShX (M) := {F | SS(F ) ⊆ X}
Presheaf construction:

µshpre : OpopT∗M → Z-Mod

Ω 7→ Sh(M)/ ShΩop(M)

Intuition: µshpre(Ω) ignores differences outside Ω.
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Microlocalization

Definition (Microlocal sheaves)

The category-valued sheaf µsh on T ∗M is the sheafification of µshpre.
The inclusion Ṫ ∗M ↪→ T ∗M induces the microlocalization functor:

Sh(M) = µsh(T ∗M) → µsh(Ṫ ∗M)

Key insight: This gives the topological analogue of D-module
microlocalization - we can study sheaves ”microlocally” by restricting to
the cotangent bundle away from the zero section.
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Microlocalization

Example (Microlocalization on S2)

Setup: M = S2 = R2 ∪ {∞} and Λ = N∗
out(B1(0)).

Observation: With only objects and 1-morphisms, it’s the quiver {• → •}.
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Microlocalization

Example (Computing the microlocalization)

Note: Away from the zero section, Ṅ∗
out(B1(0)) is homotopic to S1.

Result: µshΛ(Ṫ
∗S2) = Loc(S1) (local systems on S1)
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Microlocalization

Example (Computing the microlocalization)

Summary:

ShΛ(S
2) is approximately the quiver representation of {• → •}.

µshΛ(Ṫ
∗S2) = Loc(S1) (local systems on S1)

Microlocalization functor: µ : ShΛ(S
2) → Loc(S1) has image given by

constant local systems on S1.

Conclusion: µ is neither fully faithful nor essentially surjective:
For example, ZB1(0) is sent to ZS1 .
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Microlocalization

Definition (Microlocal perverse sheaves)

For a complex manifold X , define µPerv(Ṫ ∗X ) as the subcategory of
µsh(Ṫ ∗X ) which is locally in the image of:

Perv(X ) ↪→ Sh(X ) → µsh(Ṫ ∗X )

Remark

Since µsh / µPerv are R/C-conic, they pull back from sheaves on the
cosphere/coprojective bundle, S∗X/P∗X (denoted by the same notation).

Theorem (Microlocal Riemann-Hilbert (Andronikof, Waschkies))

The solution functor microlocalizes to an equivalence:

µSol : EX -Modrh
∼−→ µPerv(P∗X )
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To contact manifolds and an application

Goal: Globalize the microlocal Riemann-Hilbert correspondence.
(Joint work with Côté, Nadler, and Shende.)

Definition (Complex contact manifold)

A complex contact manifold V is an odd-dimensional complex manifold
with a maximally non-integrable hyperplane distribution H ⊆ TV .

Example

For a complex manifold X , the coprojective space P∗X has canonical
contact structure: H(z,[ξ]) = ker(ξ dz)

Darboux theorem: Every point p ∈ V has a neighborhood U with a
contact embedding g : U ↪→ P∗X .
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To contact manifolds and an application

Kashiwara’s construction: There exists a canonical sheaf of categories
EV -Mod on V such that locally:

EV -Mod |U ∼= g∗EP∗X -Mod

Theorem (Côté-K.-Nadler-Shende)

Let V be a complex contact manifold.

There exists a canonical sheaf of categories µPervV , locally of the
form µPervP∗X .

The equivalence µSol glues to:

µSol : EV -Mod → µPerv(V )

Significance: This provides a global Riemann-Hilbert correspondence on
contact manifolds.
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To contact manifolds and an application

Application setup: Let X be an exact complex symplectic manifold with
C×-action of weight k ∈ N+.

Exact symplectic: Liouville 1-form α with dα = symplectic form.
Weight k action: C×-action f with f ∗t α = tkα.

Local case: T ∗X with coordinates (x , ξ) has the canonical Liouville form
ξ dx and the vector bundle structure provides a weight 1 action
t · (x , ξ) = (x , tξ).
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To contact manifolds and an application

Motivation: ET∗X is conic, so only captures conic symplectic data. For
non-conic Lagrangians, we need WKB operators.

WKB operators WT∗X : Linear over Laurent series C[[ℏ, ℏ−1]]:

P =
∑
l≥−m

fl(z ,w)ℏl , fl ∈ OT∗X

Embedding: ET∗X ↪→ WT∗X via w = ℏ−1ξ.

Generalization: Polesello-Schapira construct a canonical quantization
WX -Mod for any complex symplectic manifold X.
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To contact manifolds and an application

Quantized action: The weight 1 action ft(z , ξ) = (z , tξ) quantizes to a
C[[ℏ, ℏ−1]]-linear automorphism F on WT∗X :

Ft(f (z ,w)) = f (z , tw), Ft(ℏ) = tℏ

Remark

The category of F -equivariant modules (WX,FX) -Mod often has
geometric representation theory significance, e.g., Kashiwara-Rouquier’s
microlocalization of rational Cherednik algebras, or the category O of
symplectic resolutions studied by Braden, Licata, Proudfoot, and Webster.

Theorem (Petit)

There is an equivalence:

(WṪ∗X ,F ) -Mod ≃ EP∗X -Mod
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To contact manifolds and an application

Theorem (Côté-K.-Nadler-Shende)

Let X be an exact complex symplectic manifold with weight k action.

There exists a canonical action FX on WX

.

There is an equivalence:

(WX,FX) -Modrh ≃ µPervX×C(X× C)

where (X× C, α+ dz) is the contactization of X.

Future direction:

How much of the classical applications of perverse
sheaves to geometric representation theory survives after microlocalization?

Christopher Kuo Riemann-Hilbert on contact manifolds 46 / 46



To contact manifolds and an application
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