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Abstract
These are the notes for my talk, Riemann-Hilbert on contact manifolds, presented
at the Max Planck Institute for Mathematics in August 2024. The goal of the talk
is to introduce the Riemann-Hilbert correspondence from the basics to its microlocal
version. Then we explain a joint work with Co6té, Nadler, and Shende on gluing this
microlocal version to a global Riemann-Hilbert on any given contact manifold, and an
application to deformation quantization modules of symplectic resolutions.

The name Riemann-Hilbert correspondence obtains its name from the 21st Hilbert’s prob-
lem: Proof of the existence of linear differential equations having a prescribed monodromy
on a Riemann surface, and this correspondence is a vastly generalization of its answer. We
begin the talk with recalling the definition of constructible sheaves, D-modules, and the so-
lution functor relating them. The second step is microlocalization, which relies on the notion
of microsupport of the constructible side and microdifferential operators on the D-modules
side. In addition to providing a systematic way to understand the original correspondence,
which should be thought of as living on the zero section, this notion also allows the corre-
spondence itself to be microlocalized to the coprojective bundle. Lastly, we explain, in a
joint work with Coté, Nadler, and Shende, how this microlocal version can be glued to a
global microlocal Riemann-Hilbert on any given contact manifold, and how it can be applied
to the study of deformation quantization modules of symplectic resolutions.

1 Constructible sheaves

For a topological space X, a sheaf F' € Sh(X) valued in abelian groups (Ab) is a functor
F: Op¥ — (Ab),
that is, an assignment

U~ F(U),
U V)= (F(V) = F(U)),

such that global data can be reconstructed (glued) from local pieces. More precisely, if U
admits an open cover {U; };¢s, then the sequence

0— F(U) — [[FU) — []F(Us)
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is exact. Here, the first arrow is the product of the restriction maps, and the second arrow
is the difference between the two ways of restricting

(U 2 Ui CU;, Uy =U;NU;).

Exactness at F'(U) means that two sections sy, s9 € F(U) are equal if their restrictions to
each U; agree for all ¢ € I. Likewise, exactness at [[, F'(U;) means that a family of sections
{s;} on the U; glues to a section s on U if they agree on all double overlaps Uj;.

Remark 1.1. For technical reasons, at some point during the talk, we will in fact consider
sheaves valued in chain complexes D(Z) (or in a suitable stable coefficient category). In
other words, the target category should be an (0o, 1)-category. A key difference from the
ordinary case is that the gluing

1;7j7k
does not, in general, terminate after finitely many steps.

Example 1.2. The simplest example of a sheaf is the constant sheaf Zy, which is the
sheafification of the presheaf Z%°, where Z%°(U) = Z and all restriction maps are given by
idz. Sheafification is necessary because, for instance, for two disjoint open sets U and V', the
equality
FULOV)=FU)® F(V)

must hold. In fact, one can identify Zx(U) with the abelian group of locally constant
functions from U to Z, where Z is equipped with the discrete topology. Similarly, one can
define Mx for any abelian group M by Mx(U) := C°(U; M) where M is equipped with the
discrete topology.

Definition 1.3. A sheaf F' € Sh(X) is said to be locally constant if there exists a cover

{U;} of X such that F|y, is constant. The subcategory of locally constant sheaf is denoted
by Loc(X).

The category Loc(X) is in fact equivalent to m (X, z,)-Mod or, without choosing a base
point, Fun(m(X), (Ab)) where m1(X) is the fundamental groupoid of X. (In the higher
categorical setting, one has to replace m(X) by its higher categorical counterpart.) In other
words, an object L € Loc(X) is an assignment

(xe X)L,
W:xNyHin)Ly.

Note that this latter description implies that if X is contractible, then Loc(X) = (Ab) and
all locally constant sheaves are in fact constant.

Example 1.4. On C\ {0}, since the space is connected all stalk of a local system L is
isomorphic to each other. As C ~ S*, the only other data needed is the monodromy m when



going around the circle once:
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Definition 1.5. Let 8§ = { X, }aes be a stratification of X, i.e., X = I,e; X, is a locally finite
disjoint union of the strata X,’s. A sheaf F'is said to be 8-constructible if F'|x_, € Loc(X,)
for all @ € I. We use Shg(X) to denote the category of sheaves constructible with respect
to 8

Example 1.6. When 8§ = {X} has only one stratum, Shg(X) = Loc(X).

Example 1.7. Let U C X be an open set. One can define Zy € Sh(X) by

OV Z), itV C U,
ZU(V):{ ( )

0, otherwise.

Similarly, let Z := X \ U be the complement closed set. Then, the sheaf Zy is defined by
the short exact sequence
0>Zy > Zx —Zyg— .0

Take § = {Z,U}. Then both Zy and Zx are S-constructible. In fact, the category of
S-constructible sheaves fits in a recollement

Loc¢(Z) < Shg(X) — Loc(U).

In general, Shg(X) can be complicated. However, the situation is simply if 8 is a tri-
angulation or, more generally, if all its strata are contractible, it admits a combinatorial
representation: Notice that, for any 8, triangulation or otherwise, one can define an order
“<7 by B<aif Xy C X

Lemma 1.8. If all strata in 8 are contractible, then Shg(X) = Fun (8, (Ab)) where we view

S as a poset using the order defined above.
Example 1.9. Consider the unit interval A' = [0, 1] and the stratification 8§ = {{0}, (0, 1]}.

In this case, (0,1] < {0} for 0 € (0,1] and Shg(X) is given by representations of the quiver

o}
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Similarly, if we consider the standard 2-simplex A? by {0}, (0,1], and the rest, an object
will have the following shape:

Here, the composition g o f has to agree with h.

Definition 1.10. Let M be a real analytic manifold. Then, define Shg (M) := Us Shg(M)
where S ranges over stratifications whose strata consist of locally closed subanalytic subman-
ifolds. Similarly, if M is complex is complex analytic, define She. (M) similarly, replacing
subanalytic closed submanifold by only complex analytic ones.

Remark 1.11. With some mild regularity conditions on M and 8, there always exists a
triangulation 7 refining 8. Consequently, for any reasonable §, the category Shg(M) can be
viewed as a subcategory of Fun((7, <), (Ab)), and one can think of them as T -representations
with a collection of arrows being required to be invertible.

2 D-modules

Let X be a complex manifold of dimension n, there is a ring-valued sheaf Dy, the ring of
differential operators, whose sections are locally of the form

aa
P= Z Ca=—, Cqo € Ox, co = 0 for all but finitely many «.
ZO[

Here, we choice a local coordinate z;, and for each multi-index o € N, we denote by
80& aoq aan
0z 92 Ozan
the linear operator given by composition of the standard ones. In other words, if we denote

by Ox the ring of holomorphic functions, then Dy is the subring of End¢(O) generated by
Ox and derivation Xx.

Definition 2.1. A D-module M is a sheaf of modules over Dx and the category of D-
modules on X is denoted as Dx -Mod .

Example 2.2. The sheaf Ox of holomorphic functions is canonically a D-module. A
holomorphic function f € Ox C Dx acts on Ox by multiplication and a vector field
v € Xy C Dx acts by differentiation. Leibniz’s rule ensures that the action extends to
the entire ring Dx. More generally, if E — X is a finite-dimensional complex vector bundle,
then Ox ®¢ E has a D-module structure.



The originally motivation to study D-modules is to have a homological algebraic frame-
work to study differential equations. Indeed, let P € Dx be a differential operator and call
the quotient D-module Mp := Dx/Dx - P. Then, one can compute that the sheaf-Hom

Homp, (Mp,Ox)(U) ={f € Ox(U)|Pf =0}
is given by solution of P.

Definition 2.3. We denote by Sol : Dx -Mod — Sh(X)? the functor given by Sol(M) =
Homp, (M, Ox) and call it the solution functor.

Example 2.4. Consider the complex line C! with a coordinate z. In this case, there is an
exact sequence

9
0—>Dcl %D@l%@@l—)o;

in generally, Ox can be resolved by the Koszul complex. The discussion earlier then implies
that Sol(Oc¢:) has sections f € Oy such that %f =0,s0 f = cfor ¢c € C. That is,
Sol(O¢1) = Cer from Example 1.2 (up to changing the coefficient to C).

Example 2.5. A more interesting case is the ring of meromorphic functions with poles at
0, Oc1(%0). In this case, Oc1(x0) can be resolved by

22
0 — Dc1 —{Z—)Dcl —>O(C1 — 0.

In other words, we are now solving %(zf) =0so zf =cfor c € C. When 0 ¢ U, we
have solution given by f = cz=!. When 0 € U, by setting z = 0, we see that ¢ = 0. Thus,
Sol(O¢1 (%0)) = Cery(oy- Here, for an open set U C X, the sheaf Cyy € Sh(X) is the extension
by 0 of the constant sheaf Cy; € Sh(U).

We notice that the solution sheaf of both examples are constructible. In fact, this holds
true for a large class of D-modules. To have a systematic discussion, we introduce the
microlocal notion.

3 Microlocalization

We begin with the topological side. Let X be a topological space. Recall that for a sheaf
F € Sh(X), there is a notion of the support supp(F) := {z|F, # 0}. Equivalently, supp(F)¢
is the largest open set U such that F|y = 0. The support is not a very refine invariant.
Since it cannot distinguish Zy and Zg. However, when M is a C*-manifold, there is a
enhancement: (The notion of microsupport works well only with the coefficient D(Z) and we
hence replace (Ab) by it. Since (Ab) = D(Z)¥ C D(Z), we can embed the sheaves as well.)

Approximate Definition 3.1. For a F' € Sh(M;D(Z)), its microsupport SS(F) C T*M is
a conic closed subset such that SS(F') N0y = supp(F'), and for (z,&) € T*M \ 0y, we have



(x,&) ¢ SS(F) if and only if, locally testing on small open balls,

A VN
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is an equivalence. Roughly speaking, since £ divides a given open small open ball by half,
this says that £ is not in the microsupport if any section of F' propagates uniquely across
the barrier dictated by &,

{:‘\? \ Unique Extension /i\
[T ) /\/7 | ]
= N

Example 3.2. If L € Loc(M) is a local system, then SS(L) = 0y,. Indeed, the computation
can be done on small balls so one can always assume L = Zj;. But then, restriction from a
ball to a half ball is always the identity.

Example 3.3. Let U C X be an open set with a smooth boundary 0U. We claim that
SS(Zy) = N}, (U) = 0y U N:,,(OU). Here QU is a codimensional one submanifold so its

out
conormal bundle is one dimensional and there is a well-defined notion of inward and outward.
Let (z,€) € N, (0U) such that € #. Let B be a small ball center at x. Shrinking B if needed,
one can assume that the half ball B == B N {z|¢(z) < 0} is contained in U, as & points
outward, so I'(Bg; Zy) = Z. On the other hand, B will always contain some point outside U

so I'(B;Zy) =0, as Zy is defined by extension by 0.

This same computation will show that SS(Zy) = N;n(U).

Example 3.4. On C!, a similar computation to the previous Example 3.3 will show that
SS(C@\{O}) = Oc1 U TJCI.

The notion of microsupport is closely related to symplectic geometry of 7% M.
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Theorem 3.5 ([9, Theorem 6.5.4, Theorem 8.4.2]). Let F' € Sh(M) be a sheaf.

1. The set SS(F') is coisotropic. If for simplicity we assume SS(F) is stratified by lo-
cally closed submanifolds, this means that the smooth locus SS(F)*™ is a coisotropic
submanifold.

2. Assume further that M is real analytic and SS(F') is subanalytic. Then F is con-
structible if and only if SS(F') is Lagrangian.

Similarly on the D-module side, we will define the characteristic variety Ch(M) for
M € Dx -Mod using microlocalization, which is equivalent to the usual definition.

Let 7 : T*X — X is the projection and denote by T*X = T*X \ Ox the open subset
away from the zero section. There exists a ring of micro-differential operators Er-x, which is
a complex conic sheaf on T*X. Here, “Complex conic” means that Ep«x () = Ep«x (C* - Q)
for 2 € T*M open. In particular, Ep-x|;+ is the pullback of a sheaf &p«x on P*X.

Let (&1, -+ ,&,) be coordinates for the covector directions. A section P € Ep«y is locally
of the form

Z &, cq € Ox, co =0 whena >> 0,

agZm
where the ¢,{*’s are viewed simply as functions (homogenous on the £’s). That is, the
summand can have infinitely many terms to the negative direction but has to be bounded
above. In addition, some convergence conditions are required. This way, Ep«x contains 7*Dyx
by viewing ai—aa as £*. With this inclusion, the multiplication of Er«x is given by extending
the symbol composition rules for differential operator:

Lo o
Po@ = Z ol oge P=2@

Example 3.6. In D¢, 2 and ~ satisfies the equation [%, zl=1or —z =1+ z . Viewed
them as in Ep«c1, this is

cor—c. z+§§<s> =gt

where “-” here is the simple multiplication between functions.

Over the open set {z # 0, # 0}, there are more interesting sections 2! and £~!. The
product 27! o0&t is simply 27171, However, when reversing the order, we obtain an infinite
sum

1 1. 0 0 1 0? 0?
“1 1 _1 | - Y VAR
¢ FE e N + ((052 e ) +
—51_1 €727 4 ()30 4
Definition 3.7. We define the microlocalization functor by
i Dx-Mod — &Er«x -Mod
M — (c:T*X ®7F*DX T M.

Then, for a D-module M, the characteristic variety Ch(M) := supp(u(M)) is the support
of its microlocalization.



Example 3.8. To find Ch(O¢1), we pullback and tensor the short exact sequence from
Example 2.4 and obtain
0— gp*(cl i) gp*cl — /,L(O(Cl) — 0.

Since ¢ is invertible away from the zero section, supp(u(Oc1)) = 01 € T*C!.
Similarly, to find Ch(Oc:1(x0)) from Example 2.5, one has to consider the exact sequence

0— Ep*(cl §_2> EIP*(Cl — 1% (O(Cl(*())) — 0.
Since £z is invertible if and only if £z # 0, we see that Ch(Oc1(*0)) = 0c: U T CL.
We observe that the characteristic varieties of the above Example 3.7 and 3.8 coincide with

the earlier microsupport examples we saw in Example 3.2 and 3.4. In fact, this phenomenon
holds more generally. First, we derived Sol to the functor

D, (Dx-Mod) — Sh(X)
M — RHomp, (M, Ox),

but abuse the notation and still denote it by Sol. (Thus, Sh(X) has to mean the sheaves
valued in chain complexes of C-vector spaces.)

Theorem 3.9 ([9, Theorem 11.3.3]). If M € Dx -Mod in the abelian category is coherent,
then

SS(Sol(M)) = Ch(M).
In particular, if Ch(M) is a complex Lagrangian, then Sol(M) € She..(X).
Definition 3.10. For a coherent M € Dy -Mod, we say M is holonomic if Ch(M) is
Lagrangian. For M € D, (Dx), we say M is holonomic if all H*(M) is.

coh

Before stating the Riemann-Hilbert correspondence, we need to mention there is a notion
of regular singularity for holonomic D-modules. Since the definition is somewhat involved,
we will be content with saying that a holonomic D-module is regular if formal solutions
converge.

Theorem 3.11 ([6, 10]). The solution functor Sol restricts to an equivalence
Sol : D%, (Dx) = She.(X)°.

Stated in the abelian level, there is an equivalence
Sol : Dx -Mod,;, = Perv(X).

Here, the target Perv(X) is the category of perverse sheaves.

We now introduce the corresponding notion of i on the topology side. Since there isn’t
a ring to localize, we localize the category directly and first define a presheaf

ushP® : Opf.,;, — Z-Mod
Q +— Sh(M)/ Shger (M)

where for a closed subset X C T*M, Shy (M) := {F|SS(F) C X}. In other words, ush*()
ignore the difference outside ).



Definition 3.12. The category-valued sheaf push on 7" M is the sheafification of sh™™*. The
inclusion T*M < T* M, induces a microlocalization functor

Sh(M) = psh(T*M) — psh(T*M).

To get a feeling of what the above process does, we mention that there is a version ush,
with a fixed microsupport condition A C S*M

Example 3.13. Let M = S? = R?U {oo} and A = N},(B1(0)) be the outward conormal
bundle of the unit open ball By (0) = {z?+y* < 1}, i.e., inside B;(0), it’s just the zero section
and on the boundary, it’s given by outward pointing Covectors. And, similar to Example 3.4,
considering only objects and 1-morphisms, the category is given by the quiver {+ — }.

(_f \ \\ \ (0o |

-~
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However, when computing ush, away from the zero section, since N*

: *.(B1(0)) is homotopic
to an S*, the resulting category ush, (7*S%) = Loc(S"), the same as local systems on S*.

/\k\\s'\\ \ / \ M55, N\

Thus, the microlocalization u : Shp(S?) — Loc(S!), which has image given by constant local
systems, is neither fully-faithful nor essential surjective.



Definition 3.14. For a complex manifold X, we denote pPerv(T*X) the subcategory of
push(7T*X) which is locally in the image o the composition Perv(X) < Sh(X) — ush(T*X).

Remark 3.15. As ush/pPerv are R/C-conic, it is the pullback of a sheaf from the cosphere
bundle/coprojective and we will abuse and denote it by the same notation.

The Riemann-Hilbert correspondence admits a microlocalization.

Theorem 3.16 ([1, 13]). The solution functor Sol microlocalizes to an equivalence

pSol : Ex -Mod,), = pPerv(P*X).

4 To contact manifolds

We close with a globalize version of the previous microlocal Riemann-Hilbert correspondence
and an application. Recall that a complex contact manifold V' is an odd dimensional complex
manifold with a maximally non-integrable hyperplane distribution H C T'V'.

Example 4.1. For a complex manifold X, the coprojective space P*X has a canonical
contact structure given by H . ) = ker({dz).

There is a Darboux theorem that for any point p € V', there exists some open subset
U C V and a contact embedding ¢ : U — P*X for some complex manifold X. Kashiwara
shows in [7] that there exists a canonical sheaf of categories &, -Mod on V' such that locally
on a Darboux chart as above, &, -Mod |y = ¢*Ep+x -Mod. In a joint work with Coté, Nadler
and Shende, we should that a similar object exists on the topology side and the microlocal
Riemann-Hilbert correspondence in Theorem 3.16 glues.

Theorem 4.2 ([4, 5]). Let V be a complex manifold.
1. There exists canonical sheaf of categories pPervy,, locally of the form pPervp. .

2. The equivalence pSol from Theorem 3.16 glues to an equivalence

pSol : &y -Mod,, — uPerv(V).

One application of the above theorem is the following: Let X be an exact complex
symplectic manifold with a C*-action of weight k, k € N,. That is, there is a Liouville
1-form a on X such that da is the symplectic form on X. Furthermore, there is a C*-action
f on X such that ffa = tra.

Such a set-up is of geometric representation interest, as it includes those studied in
8, 2, 3]. In particular, we will now consider the notion of W-modules, which in the case
of a conical symplectic resolution, contained a generalized version of the category O as
a subcategory. Recall that £r-x is a conic sheaf so it can only capture conic symplectic
geometric data. To obtain information about possibly non-conic Lagrangian, one enlarges
the ring to of WKB operators, Wy x, linear over the Laurent series ring C[|h, A™!] such that
a section is of the form

P = Z fl(z,w)hl,fl S OT*X‘

I>—m
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The ring E7+x embeds to Wr-x by w = h~1¢. Now, the canonical weight 1 action f;(z,&) =
(2,t€) quantizes to an C[|h, h~!|-linear automorphism F on Wr-x by Fy(f(z,w)) = f(z, tw
and Fi(h) = th, and this allows us to relate F-equivariant W-modules with E-modules.

Theorem 4.3 ([11]). There is an equivalence
(WT*X7 F) -Mod = g]p*X -Mod.

Similar to the case of E-modules, Schapira and Polesello shows in [12] that for any
(possibly non-exact) complex symplectic manifold X, there exists a canonical Wy -Mod.
Combined with the above equivalence and the Riemann-Hilbert correspondence, we obtain

Theorem 4.4 ([5]). Let X be an exact complex symplectic manifold with a C*-action of
weight k. Then,

1. There exists a canonical action Fx on Wk.

2. There is an equivalence,
(Wk, Fx)-Mod,), = uPervy, (X x C).

Here, X x C is the contactization of X.
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