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Abstract

This note is for my talk in the UCSB Seminar on Geometry and Arithmetic on
May 11, 2023 and in the Algebraic Geometry seminar in Academia Sinica on May
16th. Beginning with the classical Serre duality in algebraic geometry, we discuss some
general ideas in noncommutative geometry, and their appearance in microlocal sheaf
theory. The content of the talk is taken from my joint work with Wenyuan Li in [7].

1 Commutative and noncommutative geometry

Let k be a filed of characteristic 0 and X be a proper scheme and ωX be the dualizing sheaf.
Then the classical Serre duality asserts that, for G,F ∈ Perf(X), there is an equivalence

Hom(G,F ⊗ ωX) = Hom(F,G)∨

where the latter is the linear dual. One of the modern interpretation of this equality is that
the category IndCoh(X) is self-dual, in the following sense:

Let (A,⊗, 1A) be a symmetric monoidal category. An object X ∈ A is said to be
dualizable if there exists a triple (X∨, η, ϵ) where X∨ ∈ A is an object, η and ϵ are maps

η : 1A → X ⊗X∨, ϵ : X∨ ⊗X → 1A

such that the standard triangle equalities (ϵ ⊗ id)(id⊗η) = id, (id⊗ϵ)(η ⊗ id) = id hold.
The simplest example is when A = Vectk (resp. Vect♡k ) so dualizable objects are V ∈ Perf k
(resp. finite dimensional vector spaces), and ϵ and η are given by the natural pairing between
V and V ∨, which corresponds to the identity under V ∨ ⊗k V = End(V ).

In our case, we take A = PrLst(= PrLst(k)), the (very large) category of presentable cate-
gories, tensored over k, whose morphisms are given by k-linear colimit-preserving functors.
In this setting, any compactly generated category C = Ind(C0), of a small stable idempotent
complete category C0 tensored over k, is tautologically dualizable with C∨ = Ind(Cop

0 ), and
ϵ and η are both given by the Hom-pairing, which in noncommutative geometry is usually
referred as the diagonal bi-module IdC0 : C

op
0 ⊗ C0 → k -Mod.

On the other hand, the category IndCoh(X) has an alternative duality data given by

η = ∆Ind
∗ p! : kMod → IndCoh(X ×X), ϵ = pInd∗ ∆! : IndCoh(X ×X) → k -Mod
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where ∆ : X ↪→ X ×X is the diagonal and p : X → {∗} is the projection to a point. Here
we also use the fact that IndCoh(X) ⊗ IndCoh(Y ) = IndCoh(X × Y ) for any two schemes
X, Y .

Now, the definition of dualizability of X ∈ C implies that X∨ is determined by the fact
that X∨ ⊗ (−) is the right adjoint of X ⊗ (−); in the case when C is closed monoidal, this
further implies that X∨ = Hom(X, 1C). The fact that IndCoh(X)∨ = IndCoh(X), then
implies that, there is an identification DSerre

X : Coh(X) = Coh(X)op which is compatible with
the identifications of the two unit and counit pairs. The classical Serre duality is then a
consequence of six-functor yoga. (See the Appendix.)

We point out that, although the statement of classical Serre duality involves the symmet-
ric monoidal product on Coh(X), and hence the reason we refer it as commutative geometry,
the existence of the identification DSerre

X : Coh(X) = Coh(X)op depends only on the sym-
metric monoidal product on the entire ambient category PrLst. Thus, when study a general
category C ∈ PrLst, one thinks of it as from some sort of noncommutative space.

2 Microlocal sheaf theory

We will consider a class of categories in PrLst of a more topological/symplectic origin and
see that a similar phenomenon, that the categorical diagonal bi-module can be realized by
a geometrical diagonal. But we first introduce some microlocal sheaf theory. For this part
of the talk, one can take the coefficient to be a general symmetric monoidal category V ,
compactly generated by a small stable rigid symmetric monoidal category V0. Some popular
choices are V = k -Mod,Z -Mod, or Sp, the category of spectra.

Let M be a C∞ manifold and we use Sh(M) to denote the subcategory of V-valued
presheaves which turns a Čech colimit diagram of open covers to a limit. The functor Sh,
really defined for all locally compact Hausdorff spaces, enjoys the usual six-functor formalism.
For a sheaf F ∈ Sh(M), one can assign a set SS(F ) ⊂ T ∗M , the microsupport of F , which
is a closed, conic, and coisotropic. (The last one is a theorem of Kashiwara and Schapira.)
Similar to the support, one way to define it is to say when a point (x, ξ) is not in SS(F ).

Definition 2.1. A point (x, ξ) ∈ T ∗M is not in SS(F ) if and only if, locally on T ∗M , for
any function ϕ such that dϕx = ξ, the object

(
Γ{ϕ≥0}(F )

)
x
= 0.

Naively, this means that in coordinates, the restriction F (U) → F (U ∩ {ξ < 0}) from a
small ball U to the negative half with respect to ξ should be an equivalence. We mention
that one standard usage of the microsupport is to measure the degree of morphisms being
non-isomorphic. For this talk, the main theorem we will use, which connects microlocal sheaf
theory to symplectic geometry, is the following theorem of Kashiwara and Schapira [5]:

Theorem 2.2. Let M be real analytic and assume SS(F ) is subanalytic. Then SS(F ) is a
singular isotropic if and only if F is constructible.

An other important result also by Kashiwara and Schapira, which is later improved by
Sheel, John Pardon, and Vivek in [3] is that for any fixed Legendrian Λ ⊆ S∗M satisfying
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the above assumption, there is a subanalytic Whitney triangulation S such that Λ ⊆ N∗
∞S.

For a closed subset X in S∗M , write

ShX(M) := {F | SS∞(F ) := ((SS(F ) \ 0M)/R>0) ⊆ X},

and we mention that, because of the Whitney condition, ShN∗
∞S(M) = ShS(M) is equiv-

alent to S -Mod. In other words, one way to understand microsupport is that ShΛ(M) is
a subcategory of S -Mod, for some triangulation, with certain arrows being required to be
isomorphic.

Example 2.3. Consider the case when M = S1, the stratification S = {{0}, (0, 1)}, and
Λ = {(0,−1)} ⊆ S∗S1 = S1×{±1}. The category ShS(M) is the quiver representation with
two vertices and two arrows, going to the same direction, between them. Another name of
this category is Coh(P1). To be in the subcategory ShΛ(M), the requirement is for one of
the arrows, a fixed one, to be isomorphic. Again, this category has another name which is
Coh(A1) and they are the simplest examples of toric mirror symmetry.

Now, before going back to noncommutative geometry, there is a one more thing we have
to mention, i.e., for any closed conic subset X ⊆ T ∗M , the inclusion ShX(M) ↪→ Sh(M)
have both left and right adjoints. Combining with the fact that ShΛ(M) ⊆ S -Mod for some
triangulation S, we conclude that ShΛ(M) is compactly generated and we will, consequently
denote its compact objects by ShΛ(M)c. We mention that it contains ShΛ(M)b0 where the
superscript ‘b’ means perfect stalks and the subscript ‘0’ means compact support.

3 Dualizability of sheaves with prescribed Legendrian

microsupport

The main observation of this talk is that, for a Legendrian Λ ⊆ S∗M , the dual of the category
ShΛ(M) admits a description ShΛ(M)∨ = Sh−Λ(M) where −Λ ⊆ S∗M , is the image of Λ
under the involution (x, [ξ]) 7→ (x, [−ξ]). Similar to the algebraic geometry case, the idea is
to use the geometrical diagonal to represent the categorical diagonal. Again, we will utilize
the identification Sh−Λ(M)⊗ShΛ(M) = ShΛ×−Λ(M ×M), where for Legendrians Λ ⊆ S∗M ,
Σ ⊆ S∗N at infinite, we use the notation Λ× Σ to mean the Legendrian

((R>0Λ ∪ 0M)× (R>0Σ ∪ 0N)) \ 0M×N/R>0.

One problem, however, is that SS(1∆) = N∗∆ is never going to have the correct microsupport
condition. The solution is very simple: One simply applies the left adjoint, ι∗Λ×−Λ, of the
inclusion ShΛ×−Λ(M × M) ↪→ Sh(M × M) to force the microsupport condition. Then a
similar computation as the algebraic geometry case provides the following:

Theorem 3.1 ([7, Theorem 1.16]). The triple (Sh−Λ(M), η, ϵ) where η and ϵ are given by

η = ι∗Λ×−Λ∆∗p
∗ : kMod → ShΛ×−Λ(M ×M),

and
ϵ = p!∆

∗ : Sh−Λ×Λ(M ×M)) → k -Mod

exhibit Sh−Λ(M) as a dual of ShΛ(M).

3



Because of the above theorem, there exists an identificationDΛ : ShΛ(M)c,op = Sh−Λ(M)c.
We explain that this identification gives something familiar for those F in ShΛ(M)b0. Unique-
ness of the counit ϵ implies that for F ∈ ShΛ(M)c and H ∈ Sh−Λ(M)c, there is an identifi-
cation

Hom(DΛ(F ), H) = p!(F ⊗H).

Assume F in ShΛ(M)b0 and one can perform the computation

p!(F ⊗H) = p∗(F ⊗H) = p∗((F
∨)∨ ⊗H) = p∗∆

∗(Hom(π∗
2F

∨, π∗
1H)).

We would like to give an explanation of the last term but we need to take a detour and
explain what isotopies of sheaves are.

Recall that a contact manifold (V 2n−1, ξ) is an odd dimensional manifold with a hyper-
plane distribution ξ ⊆ TV which is maximally nonintegrable, meaning that, if one takes any
local expression ξ = kerα, then α ∧ (dα)n−1 is nonvanishing. A contact isotopy φt : V → V
is a smooth family of diffeomorphism such that φ0 = id and (φt)∗ξ = ξ. One key theorem
which introduces contact geometry into microlocal sheaf theory is the Guillermou-Kashiwara-
Schapira sheaf quantization:

Theorem 3.2 ([4]). Let Φ : S∗M × I → S∗M be a contact isotopy. Then there exists a
unique sheaf K(Φ) ∈ Sh(M ×M × I) such that K(Φ)t=0 = 1∆ and SS∞(K(Φ)) is contained
in the movie of Φ.

Let qx : Mx × My × It → Mx and qyt : Mx × My × It → My × It be the corresponding
projections. Then for a sheaf F ∈ Sh(M), the convolution K(Φ) ◦ F := qyt!(K(Φ)⊗ q∗xF ) is
an object in Sh(M × I), which can be thought of as an I-family sheaves. For a fixed t ∈ I,
denote by Ft the restriction (K(Φ) ◦ F )|t = K(Φ)|t ◦ F . The main property of Ft is that
SS∞(Ft) = φt(SS

∞(F )) and we thus think of K(Φ) ◦ F an isotopies of F , which sometimes
people like to refer this as a wrapping.

Note that S∗M is co-orientable, i.e., there is a global one form α such that kerα gives
the contact structure. In this case, one say an isotopy is positively, which really should be
called non-negative, if α(φ̇t) ≥ 0. When Φ is positively, an extra property of K(Φ) is that,
for s ≤ t, there is a continuation map K(Φ)|s → K(Φ)|t.

Proposition 3.3 ([7, Proposition 4.3]). Let F,H ∈ ShΛ(M)0 and denote by Gω a non-
specified small positive push-off displacing Λ from itself. Then there is an identification

Γ (M ; ∆∗Hom(π∗
2F, π

∗
1H))

∼−→ Hom(Fw, H).

To get from Fw back to ShΛ(M), we mention that the adjoints of the inclusion ShX(M) ↪→
Sh(M), which we mentioned that it exists, also admit a contact geometrical description.

Theorem 3.4 ([6, Theorem 1.3]). The left (resp. right) adjoint of the inclusion ShX(M) ↪→
Sh(M) is given by

W+
X(F ) := colim

w:Xc
Fw (resp. W−

X(F ) := lim
w−:Xc

Fw−
)

where w (resp. w−) runs over all positive (resp. negative) wrapping compactly supported
away X.
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Thus, combining all the above identifications, we obtain that

Corollary 3.5. For F ⊆ ShΛ(M)b0, the “Serre dual” of F with respect to Λ is given by

DΛ(F ) = W+
Λ ((F∨)w) ∈ Sh−Λ(M)c

where F∨ := Hom(F, 1M) is the naive dual of F .

4 Spherical functors

We give a noncommutative geometric explanation of the endofunctor on ShΛ(M), sending
F to W+

Λ(F
w) where we again fix a small wrapping w displacing Λ from itself.

Definition 4.1. Let F : C → D be a functor with left and right adjoints. Then, one obtains
two adjuntion pairs of endofunctors S± on C and T± on D, which are given by the following
four fiber sequences:

FLF → idC → S+, T+ → idD → FFL,

S− → idC → FRF, FFR → idD → T−.

When all four of S± and T± are equivalences, we say that F is a spherical functor.

In our case, the functor F comes from microlocalization: One can define the category-
valued sheaf µsh by sheafifying the presheaf

Ω 7→ Sh(M)/ ShΩc(M)

where Ω ⊆ T ∗M runs over conic open sets in the cotangent bundle. The notion of mi-
crosupport descents to µsh and, for F ∈ µsh(Ω), the microsupport on Ω, SSΩ(F ) ⊆ Ω, is
well-defined.

Definition 4.2. We denote by µshΛ the subsheaf with objects microsupported in Λ.

An alternative construction of µshΛ is by sheafifying the presheaf Ω 7→ ShΛ(M)/ ShΛ\Ω(M)
and in this case, one sees that there is a canonical functor mΛ : ShΛ(M) → µshΛ(Λ) coming
from the inclusion Ṫ ∗M ⊆ T ∗M . For tautological reason, the functor mΛ has both left and
right adjoint and we use S±

Λ and T±
Λ to denote the corresponding functors mentioned above.

Theorem 4.3. The functor S+
Λ : ShΛ(M) → ShΛ(M) can be computed as

S+
Λ (F ) = W+

Λ(F
w)

where w is any small positive wrapping, displacing Λ from itself. When Λ ⊆ S∗M is swap-
pable, i.e., when there exists a small neighborhood U of Λ such that there exists a positive
isotopy sending Uw to Uw−

, then S+
Λ is an equivalence. A similar statement holds for S−

Λ .

Proof. The statement holds locally, which can alternatively viewed as the definition of µshΛ

as in [8], and one argues that such picture glues globally.

Corollary 4.4 ([7, Proposition 5.28]). For a swappable Λ ⊆ S∗M , the Serre functor on
ShΛ(M)b0 is given by

F 7→ S−
Λ (F ⊗ ωM).
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A Some derived algebraic geometry

The main goal of this section is to explain how one can get the classical Serre duality from
IndCoh(X)∨ = IndCoh(X). For this talk, we will assume our scheme to be almost finite type
[2, 1.7.2, 3.5.1 of I.2]. That is, they are separable quasi-compact scheme, which are convergent
as prestacks, and any truncation is of finite type. For such a scheme X, the subcategory
Perf(X) consisting of dualizable objects will be the same as QCoh(X)c, compact objects in
QCoh(X). In particular, taking global sections Γ(X;−) preserves colimit.

Another small category one like to consider is Coh(X), the subcategory of QCoh(X)
consisting of bounded chain complexes with coherent cohomology [2, 1.1.1., II.1]. The Ind-
coherent sheaves are objects of the category IndCoh(X) := Ind(Coh(X)), which admits a
functor ΨX : IndCoh(X) → QCoh(X) [2, 1.1.2, II.1]. When assuming the scheme X to
be eventually connective, i.e., when OX ∈ Coh(X) and the inclusion Perf(X) ⊆ Coh(X),
which is usually a proper inclusion as shown in the following example, gives a left adjoint
ΘX : QCoh(X) → IndCoh(X) of ΨX .

Example A.1. Let X = Spec(k[t]/(t2)). Then k ∈ Coh(X) \Perf(X) and the key observa-
tion is that k is the same as the unbounded chain complex

· · · t−−→ k[t]/(t2)
t−−→ k[t]/(t2)

t−−→ k[t]/(t2) → 0.

Now we note that tensor products on QCoh(X) induces an Perf(X)-action on Coh(X),
and we obtain an QCoh(X)-action on IndCoh(X),

QCoh(X)⊗ IndCoh(X) → IndCoh(X),

by taking Ind-completion. For a F ∈ IndCoh(X), (−) ⊗ F has a right adjoint given by
Hom(F,−) [1, 9.5.2]. For a scheme X, the dualizing sheaf ωX := p!k, where p : X → Spec k
is the projection to a point, is defined to be the !-pullback of the base field k. One can show
that DSerre

X (F ) : Coh(X)op = Coh(X) is given by DSerre
X (F ) = Hom(F, ωX) [1, Proposition

9.5.7] by comparing the two counits.
With the above background, we can deduce the classical statement of Serre duality, that

on a proper scheme X, there is an equivalence,

Hom(G,F ⊗ ωX) = Hom(F,G)∨

for any F,G ∈ Perf(X), with the following computation:
We first notice that when X is proper, p! : k -Mod → IndCoh(X) is the right adjoint of

pInd∗ : IndCoh(X) → k -Mod. (Recall that, in general, p! is neither a left adjoint nor a right
adjoint.) Thus, the right hand side is given by

Hom(F,G)∨ = Homk(HomX(F,G), k) = HomX(Hom(F,G), ωX).

Here, we use the fact that Hom(F,G) ∈ Perf(X), so HomX(F,G) = pInd∗ Hom(F,G). By
definition, Perf(X) consists of dualizable objects so the internal Hom Hom(F,G) = F∨ ⊗E
is given by a tensor, i.e.,

Hom(F,G)∗ = HomX(F
∨ ⊗G,ωX) = HomX(G,Hom(F∨, ωX)) = HomX(G,F ⊗ ωX).
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