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Abstract

Let A be an algebra. The Koszul duality is a type of derived equivalence between
modules over A and modules over its Koszul dual A!. In this talk, we will talk about
the general framework and then focus on the classical cases as well as examples.

1 Introduction

A standard way to obtain equivalence between categories of modules is through Morita
theory. Let C be a representable, k-linear, cocomplete category. Let X ∈ C be a compact
generator which means the functor HomC(X, ·) is cocontinuous and conservative. Let
A = EndC(X)op be the opposite algebra of the endomorphism algebra of X. Then we have
the Morita equivalence, X ∼= A−Mod which is given by the assignment Y 7→ HomC(X, Y ).

Let k be a field such that char(k) 6= 2 and A be an algebra over k. Following
the above framework, one might hope that in some good cases there’s an equivalence
A −Mod ∼= HomA(k, k)op −Mod. Unfortunately, this is not true in general. Consider
the case A = k[x] and equip k with the trivial A-module structure. There is a two term
projective resolution of k by 0 → k[x]

x−→ k[x] → k → 0 and HomA(k, k) ∼= k[ε] with
ε2 = 0. So we can ask if that the assignment M 7→ Homk[x](k,M) induces a equivalence
k[x]−Mod ∼= k[ε]−Mod?

The answer is false. For example, the functor Homk[x](k, ·) kills non-zero objects. Let
ka = k[x]/(x− a). They are modules with underlining vector space k such that x · 1 = a.
The image Homk[x](k, ka) ∼= 0→ k

a−→ k → 0 is isomorphic to the 0 object in the derived
category when a 6= 0. There is also some completeness issue which we will talk about
later.

The goal of this talk is to explore the various settings that make this heuristic work
and to provide examples of the duality.

2 The graded version

In this notes, we abuse the notation and write ⊗k by just ⊗.

Definition 2.1. Let A =
⊕

i≥0Ai be a graded algebra such that A0 = k and dimk Ai <
∞. We say A is Koszul if there is a graded projective resolution of the trivial module k,

· · · −→ P 2 −→ P 1 −→ P 0 −→ k −→ 0

such that P i = AP i
i is generated at deg i. In this case, we define the Koszul dual algebra

A! to be the extension algebra Ext·A(k, k)op where non-graded version of Ext.
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Example 2.1. Let V be a finite dimension k vector space and A = S(V ) its symmetric
algebra. The algebra A is Koszul since k is resolved by

· · · −→ S(V )⊗ Λ2V −→ S(V )⊗ V −→ S(V ) −→ k −→ 0,

where the differential is given by

f(x1, · · · , xn)vi1 ∧ · · · ∧ vij 7→
∑
k

(−1)1+kf(x1, · · · , xn)xikvi1 ∧ · · · ∧ v̂ik ∧ · · · ∧ vij .

Fact 2.1. If A is Koszul, then A! is also Koszul. Moreover, (A!)! ∼= A!.

When A is Koszul, A can be presented by generators at deg 1 and relations at deg 2.

Definition 2.2. An algebra A is called quadratic if A ∼= T (V )/R for some finite dimen-
sional k-vector space V and subspace R ⊆ V ⊗2 .

Fact 2.2. If A is Koszul, then A is quadratic. Write A = T (V )/R for some V and R.
Then A! ∼= T (V ∗)/R⊥.

Example 2.2. Let V be a finite dimensional vector space. Set R = {0}, then A = T (V )
the tensor algebra. In this case, R⊥ = V ⊗2 and A! = k ⊕ V ∗ with the trivial algebra
structure. Note A and A! are Koszul since it the trivial A-module k can be resolved by
the two term resolution,

0→ T (V )⊗ V → T (V )→ k → 0.

Example 2.3. Let V be a finite dimensional vector space. Set R = 〈xy − yx〉k, then
A = S(V ) the symmetric algebra of V . In this case, R⊥ = 〈xy + yx〉 and A! = Λ·V ∗ the
exterior algebra of V ∗. As mentioned before, A and A! are Koszul.

For a quadratic algebraA = T (V )/R, we use the same notationA! to denote T (V ∗)/R⊥

and call it the Koszul dual algebra of A. Then for any quadratic algebra, there is the
Koszul complexes

· · · −→ A⊗ (A!
2)
∗ −→ A⊗ (A!

1)
∗ −→ A −→ k −→ 0

where the differential is given by (df)(a) =
∑

α f(av̂α)vα. Here we identify A⊗ (A!
i)
∗ with

Homk(A
!
i, A). The finite set {vα} is any basis of V and {v̂α} is the dual basis. Recall

that
∑

α v̂α ⊗ vα is the coevaluation in V ∗ ⊗ V ∼= Homk(V, V ).

Fact 2.3. When A is Koszul, the Koszul complexes gives a graded projective resolution
of k.

Now following the Morita framework, we want to define an adjunction pair F :
K(A!) � K(A) : G by a Hom/⊗ adjunction. Here K(A) is the homotopy category
of the category of chain complexes of A-modules. Let T = A ⊗ A! which is a A − A!

bimodule. There is a natural differential structure on T which is given by

u⊗ a 7→
∑
α

uxα ⊗ x̌αa.

0The functors F and G go in the opposite direction in [1] and [4]
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We define F (N) = T ⊗A! N and G(M) = HomA(T,M). Here HomA and ⊗A! means
the Hom and tensor chain complexes. More explicitly, identify F (N) = T ⊗A! N =
A ⊗ A! ⊗A! N ∼= A ⊗ N . The degree p piece F (M)p is A! ⊗Mp and the differential is
given by

dF (N)(a⊗ u) =
∑
α

axα ⊗ x̌αm+ a⊗ dN(n).

The complex G(M) can be identified as Homk(A
!,M) and the chain complex structure

can be described in a similar wau. In the case when N and M are graded, we can equip
F (N) and G(M) with gradings.

The theorem is the following.

Theorem 2.1 (Beilinson-Ginzburg-Soergel([1]). The pair of functors F : K(A!) �
K(A) : G forms an adjunction. When restricts to one side bounded chain complexes
of graded modules the adjunction F : D−(graded A!) � D+(graded A) : G induce an
equivalence of categories. Here D− means bounded above derived category and similar for
D+.

A natural question is whether we can extend this equivalence to unbounded chain
complexes F : D(graded A!) � D(graded A) : G?

The answer is false. Consider A = k[x] with the natural grading for example. It is a
compact object in D(A) and G(A) ∼= 0 → k[x]

x−→ k[x] → 0 ∼= k 〈1〉 [−1]. The latter is
not compact in D(A!) = D(k[ε]). Resolve k by

−→ k[ε] 〈2〉 ε−→ k[ε] 〈1〉 ε−→ k[ε]→ k → 0.

From this expression, we can see HomD(k[ε](k,
⊕

n∈N k 〈n〉 [n]) 6=
⊕

n∈N HomD(k[ε](k, k 〈n〉 [n]).

3 A more general setup

Note that FG(M) is the Koszul complex

· · · → A⊗ (A!
p)
∗ ⊗M → A⊗ (A!

p−1)
∗ ⊗M → A⊗M.

So the canonical maps induce by the adjunction FG(M) → M and N → GF (N) are
quasi-isomorphisms.

We denote the full subcategory of acyclic chain complexes in K(A) by ZA. Define
NA := {N ∈ ZA

∣∣G(N) ∈ ZA!} and define NA! in a similar fashion. Then formal homo-
logical algebra arguments imply:

Theorem 3.1 (Fløstard ([4]). The adjunction pairs F : K(A!) � K(A) : G descends to
an equivalence of categories F : K(A!)/NA! � K(A)/NA : G.

Remark 3.1. Note that we don’t need to consider graded modules in this setting. More-
over, 0→ k

a−→ k → 0 is no longer 0 for the case A = k[x].

Another advantage of not using graded modules is that we can consider a wider
varieties of algebras.

Definition 3.1. An algebra U is called a quadratic-linear-scalar algebra if U ∼= T (V )/P
for some finite dimensional k-vector space V and subspace P ⊆ k ⊕ V ⊕ V ⊗2 such that
P ∩ (k ⊕ V ) = {0}. Let R = p2(P ) be the deg 2 projection of P . We call A = T (V )/R
the associated quadratic algebra of U .
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Note that the assumption P ∩(k⊕V ) = {0} implies there are k-linear maps α : R −→
V and β : R −→ k such that P = {x+ α(x) + β(x)

∣∣x ∈ R} is a graph.

Proposition 3.1. Assume A is Koszul. Then U is of PBW-type, i.e., the canonical map
A � grU is an isomorphism if and only if α∗ : V ∗ ∼= A!

1 → A!
2
∼= R∗ can be extended to

an (anti)-derivation d such that if we set c = β∗(1) such that d(c) = 0 and d2(b) = [c, b].

In general, a triple (B, d, c) satisfying the above condition is called a curved differential
graded algebra.

Example 3.1. Let V = (g, [·, ·]) be a finite dimensional Lie algebra. Set P = 〈xy − yx− [x, y]〉k,
then U = U(g), the universal enveloping algebra. In this case, R = 〈xy − yx〉k so
R⊥ = 〈xy + yx〉k and A! = Λ•g∗. The differential is extended from the linear map
d : g∗ → Λ2g∗ which is given by (dλ)(x, y) = λ([x, y]). The resulting differential graded
algebra (Λ•g∗, d) is the Chevalley-Eilenberg cochain complex.

Example 3.2. Let (V,w) be a finite dimensional vector space equipped with a non-
degenerate bilinear form w. Set P = 〈x− w(x)〉k, then U = Cl(V,w), the Clifford
algebra on V associated with w. In this case, R = 〈xy + yx〉k so R⊥ = 〈xy − yx〉k and
A! = S(V ∗). The curvature element is the quadratic function w(x).

Most of the constructions can be generalized to this setting. Let K(U) be the ho-
motopy category of chain complexes of U -modules, K(A!, d, c) be the homotopy cate-
gory of curved differential graded modules. The latter consists of objects M such that
dM(am) = dA!(a)m + (−1)|a|adM(m), d2M(m) = cm for a ∈ A! and m ∈ M . Also, set
T = U ⊗ A! with the right cdg module structure u ⊗ a 7→

∑
α uxα ⊗ x̌αa + u ⊗ dA!(a).

The construction goes parallel to the previous case.

Theorem 3.2 (Fløystad [4]). The pair F : K(A!, d, c) � K(U) : G still forms an ad-
junction. When U is Quadratic-linear, i.e., the curvature c = 0, the adjunction descends
to F : K(A!, d)/N(A!,d) � K(U)/NU : G which gives an equivalence of category.

Remark 3.2. The case U = U(g) is, in some sense, the historical inspiration for Koszul
duality. Recall for a topological space X, one can construct a Sullivan minimal model

(MX , d) which is a dga such that (M(X), d)
qis−→ C∗(X,Q). There is also the Lie model

LX = π∗(ΩX)⊗Q with the Whitehead bracket being its Lie bracket such that ULX
∼=−→

H∗(ΩX;Q). Roughy speaking, an homotopy (L∞) version of (ULX)! = (M(X), d) should
hold. See [12] for details.

4 Clifford modules and matrix factorization

It’s harder to describe which kind of morphisms we should localize when there is non-
trivial curvature. So the speaker decided not to talk about the general case but just the
case when U = Cl(V,w) the Clifford algebras. In this case, the dual objects will be the
matrix factorization.

Definition 4.1. Let R = k[x1, · · · , xr] be the polynomial ring with r variables and fix a

polynomial w(x). A matrix factorization of w(x) is a sequence M0
φ−→ M1

ψ−→ M0 which

is isomorphic to a sequence of the form Rn P−→ Rn Q−→ Rn such that P,Q ∈Mn×n(R) and
PQ = QP = w(x) id. We denote this by M = (P,Q).

A morphism between M = (P,Q) and M′ = (P ′, Q′) will be a diagram which is
isomorphic to
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Rn Rn Rn

Rn Rn Rn

P Q

P ′ Q′
A D A

We denote the category of matrix factorizations of w(x) by MF (w).

Fix a non-degenerate quadratic form w(x). We can define a pair of functors H :
MF (w) � ClMod(V,w) : M in an explicit way. The right hand side is the category of
Clifford modules.

For M = (P,Q) ∈MF (w), write w(x) =
∑
wijxixj. Define the matrix Qi by

Qi =

[
0 ∂Q

∂xi
(0)

∂P
∂xi

(0) 0

]
.

The matrices Qi’s satisfy the equation QiQj +QjQi = 2wij so we can use them to induce
a Clifford module structure on kn ⊕ kn. We denote this Clifford module by H(M).

For a Clifford module A = A0 ⊕ A1, we define a matrix factorization M(A) by the

sequence k[V ∗] ⊗ A0
φ−→ k[V ∗] ⊗ A1

ψ−→ k[V ∗] ⊗ A0 where φ(1 ⊗ a) =
∑

i xi ⊗ eia and
similarly for ψ.

Theorem 4.1 (Bertin [2]). The pair H : MF (w) � K(f.d.CL(V,w)) : M forms an
equivalence of category.

5 Other Settings

There are a few more ways to solve the completion issue. For example, Keller in his notes
([7]) uses a even more general setting. Instead of algebras, we can consider differential
graded algebras without any finiteness condition. In this setting, the dual objects will
be the differential coalgebras. So instead of considering Ext

•

A(k, k), the main player will
be a dg coalgebra Tor

•

A(k, k). At the end, there is an equivalence of categories between
the (unbounded) derived category of dg A-modules and the coderived category of dg
comodules over the Koszul dual of A.

We don’t need any grading in this setting and k[x] will be regarded as a dga concen-
trated in (differential) deg 0.
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