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Abstract

Let X = SpecA be a affine scheme. The Hochschild-Kostant-Rosenberg theo-
rem relates the Hochschild homology of X with the differential forms on X:

HH•(QCoh(X)) = Λ
•

X(Ω(X)).

In this two-part talk, we recall the setting of derived algebraic geometry and
introduce some standard constructions. Then we will see that once everything is
set up, we can provide a quick geometric proof and extend the statement to derived
scheme X:

OLX ∼= Ω−
•

X

as OX -algebras where Ω−
•

X = Sym•(T ∗X[1]) is the symmetric algebra on the shifted
cotangent complex.

We mostly follow Brav’s talk ([Bra18]) and Ben-Zvi and Nadler’s paper ([BD10])
in this talk. The foundational material can be found in Gaitsgory and Rozenblyum’s
book ([GR16]). Any errors introduced are mine.

1 Settings

Through this talk, we fix a ground field k of characteristic 0 and fix a model for the
∞-category of ∞-groupoids S. Unless specified, all the categorical terminologies are
understood in the infinit/derived categorical sense.

Definition 1.1. By a derived k-algebra A, we mean a coconnective commutative dg
k-algebra meaning H i(A) = 0 for all i > 0. We write DGA− for the category of derived
k-algebras. We denote Schaff the opposite category (DGA−)op and refer the objects of
this category as affine schemes.

Remark 1.2. One can also use simplicial commutative rings or E∞ rings as the model
of affine schemes. All three of them give an equivalent theory. However, in positive
characteristic, dg algebras are ill-behaved and commutative rings and E∞ rings give
different (well-behaved) theories.

In this talk, we will take the functor of points approach and the basic geometric
objects are prestacks.
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Definition 1.3. A prestack over k is a functor

X : (Schaff)op → S

from the category of affine schemes to groupoids.

We can equip several different Grothendieck topologies on the category of prestacks
such as flat, ppf, étale or Zariski topology.

Definition 1.4. A prestack X is a stack if it satisfies étale descent and X is a scheme if
it’s a stack with affine diagonal and has a Zariski atlas. We denote the category of stacks
by DSt and the category of schemes by Sch.

Remark 1.5. People usually refer this type of schemes as separated schemes. We assume
this condition to avoid pathological cases. Replacing the condition of satisfying Zariski
descent by étale descent gives the same objects.

Now we want to define quasi-coherent sheaves. For an affine scheme SpecA, we define
the category of quasi-coherent sheaves QCoh(SpecA) to be A−Mod. If there is morphism
f : A→ B, then B is naturally an A-module and we can define the pullback functor

f ∗ : QCoh(SpecA)→ QCoh(SpecB)

by tensor M 7→ B ⊗A M . For a prestack Y , we define

QCoh(Y ) = lim
S

y−→Y

QCoh(S).

In other words, an object F ∈ QCoh(Y ) is a family of modules FS,y with compatible
isomorphisms

FS′,y′
∼= g∗FS,y.

Pullback between prestacks can be defined tautologically.
The pushforward functor is defined as the right adjoint of pullback. In some good

cases, for example, if f : X → Y is a quasi-compact morphism between schemes, then f∗
is continuous and satisfies the base change property.

Remark 1.6. A topological space K induces naturally a derived stack. Since K can be
regarded as a ∞-groupoid, we can sheafify the constant derived prestack

A 7→ K

to a derived stack which we will still denote as K.

2 Hochschild-Kostant-Rosenberg theorem

We recall the statement of the Hochschild-Kostant-Rosenberg theorem.

Theorem 2.1. Let A be a commutative finitely generated smooth k-algebra. Then

HH•(A) ∼= ΛA(Der(A)).
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We will generalize this result to the case of derived schemes with affine diagonal. (I
will assume this condition through the talk for convenience.)

We first recall the definition of Hochschild homology. Let C be a complete, cocomplete,
stable and representable dg category. We further assume that C is dualizable which means
there is another such category C∨ and functors co : Vect→ C∨⊗C and ev : C⊗C∨ → Vect
satisfying axioms for evaluation and coevaluation.

Remark 2.2. We can talk about dualizability for objects in a monoidal category. In that
case, C∨ ⊗ C 6∼= C ⊗ C∨ in general.

For an endofunctor F : C → C. The trace of F is defined by the composition

tr(F ) : Vect
co−→ C∨ ⊗ C idC∨ ⊗F−−−−→ C∨ ⊗ C ∼= C ⊗ C∨ ev−→ Vect

applying to k ∈ Vect. The Hochschild homology of C is defined to be HH•(C) := tr(idC)
the trace of the identify functor.

Now consider the case C = QCoh(X) for some smooth derived scheme X. The
category QCoh(X) is self-dual and QCoh(X)⊗QCoh(X) ∼= QCoh(X ×X). Under these
identification, the evaluation and coevaluation are given by the compositions

co : Vect ∼= QCoh(∗) p∗−→ QCoh(X)
∆∗−→ QCoh(X ×X)

and
ev : QCoh(X ×X)

∆∗−→ QCoh(X)
p∗−→ QCoh(∗) ∼= Vect,

where p : X → ∗ is the projection to the point and ∆ : X → X × X is the diagonal
map. By definition, the Hochschild homology is HH•(QCoh(X)) = p∗∆

∗∆∗p
∗(k). (Note

this statement holds true for a general stack.)
There is a way to re-write the expression on the right hand side. Recall that S1 can

be fit into the pushout diagram:

∗ q ∗ ∗

∗ S1

Apply Map(·, X) to this diagram and we get the pullback diagram

Map(S1, X) X

X X ×X∆

∆

Here, for any two stack Y, Y ′, we can form the mapping stack Map(Y, Y ′) whose S
points is the space

Map(Y, Y ′)(S) := MapDSt(Y × SpecS, Y ′).

People usually call the space Map(S1, X) the loop space of X and denote it as LX. We
can extend this diagram to the following one.
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Map(S1, X) X ∗

X X ×X

∗

π p

∆

π ∆

p

Here π : LX → X is the canonical projection. We compute by base change that the
Hochschild homology

HH∗ (QCoh(X)) ∼= p∗∆
∗∆∗p

∗(k) ∼= p∗π∗π
∗p∗(k) ∼= p∗π∗OLX ∼= O(LX)

is isomorphic to the global functions of the loop space LX. This is the first half of
the Hochschild-Kostant-Rosenberg theorem and it holds for any stacks which satisfies
the base change property. In the case of schemes, loop spaces and tangent bundles are
isomorphic to each other.

3 The cotangent complex

As in the classical case, the cotangent complex plays a role in deformation theory.

Definition 3.1. A k-linear map δ : A → M is a derivation if it satisfies graded Leibniz
rule. We denote the k-module of all derivations from A to M by Der(A,M). The
funtor M 7→ Der(A,M) is corepresentable by the Kähler differential ΩA which can be
constructed by generators and relations as in the classical case.

Remark 3.2. The Kähler differential Ω1
A doesn’t respect quasi-isomorphism in general.

But this construction does when the k-algebras are quasi-free and for any k-algebra A of
finite type, there is a resolution A′ → A which is quasi-free.

In the case M ∈ A-Mod≤0, we denote the trivial square zero extension by A ⊕M
where the multiplication is given by (a1,m1) · (a2,m2) = (a1a2, a1m2 + a2m1). One can
check that the morphisms between cdgas B −→ A⊕M over A correspond to morphisms
between A-modules f ∗Ω1

B →M .
More generally, given a prestack X : (Schaff)op → S and a point x : SpecA = U → X

and F ∈ QCoh(U)≤0, we can look at maps between UF = Spec(A⊕ F ) and X below U .
This gives a covariant functor

F 7→ MapDSt,U/(UF , X) = MapDSt(UF , X)×MapDSt(U ,X) {x}.

That is, the cotangent space at x fits into the fiber diagram.

Hom(T ∗x (X), F ) MapDSt,U/(UF , X) MapDSt(UF , X)

x MapDSt(U , X)

�

∼
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Definition 3.3. We sayX has a cotangent space at x if the above functor is corepresentable
in QCoh(U)− and we denote the corepresentative T ∗x (X)

If there is morphism between affine scheme f : U → V that sends a point y : V → X
to x : U → X, then there is a morphism between quasi-coherent sheaves

T ∗x (X)→ f ∗T ∗y (X).

Definition 3.4. If X has all cotangent spaces and the above morphisms are all isomorphic.
Then it gives a quasi-coherent sheaf

T ∗(X) ∈ QCoh(X)

and we call it the cotangent complex of X.

The cotangent complex doesn’t always exists. For an affine scheme X = SpecA, the
Kähler differential ΩA gives a construction for the cotangent complex. So it exists for
Artin stacks. The way to construct it is by taking an smooth affine cover and use descent
to get a global object.

Example 3.5. Let F : An −→ Am be a polynomial map F = (f1, · · · , fm) and denote
X = SpecA = F−1(0). Since fiber product is given by tensor product,

A = k[x1, · · · , xn]⊗k[y1,··· ,ym] k

where yi acts on k[x1, · · · , xn] by fi. Denote V = k 〈y1, · · · , ym〉 and resolve k by the
standard Koszul resolution

0 −→ ΛmV ∗ ⊗ S(V ) −→ Λm−1V ∗ ⊗ S(V ) −→ · · · −→ V ∗ ⊗ S(V ) −→ S(V ) −→ k −→ 0

where the differential is given by

ω ⊗ f(y1, · · · , ym) 7→
i∑

i=0

(ιyiω)⊗ yif(y1, · · · , ym).

This includes the case of intersecting the origin with itself. The resulting algebra A is
the based loop space at {0} which is usually denoted as Am[1].

Then we see that A ∼= k[x1, · · · , xn, y1, · · · , ym] the quasi-free cdga with generators
xj’s in deg 0, yi’s in deg−1 and the differential is given by dAyj = fj(x1, · · · , xn).

For this kind of algebra A, the cotangent complex T ∗(X) is given by the Kähler
differential

ΩA = 〈d
dR
x1, · · · , ddR

xn, ddR
y1, · · · , ddR

ym〉
with deg(d

dR
xi) = 0, deg(d

dR
yj) = −1, and the differential is given by

dΩ(d
dR
yi) =

m∑
j=0

∂fj
∂xj

d
dR
xj.

On can also compute this by using the fact that taking cotangent complex is con-
travariant.

When F is smooth, the fiber is smooth and

ΩA
∼= Ωk[x1,··· ,xn]/(f1,··· ,fm)[0]

where the later Ω denotes the classical Kähler differential.
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Definition 3.6. The odd tangent bundle of a derived stack X is the linear derived stack

TX [−1] = SpecOX
Sym

•
(T ∗(X)[1]).

Now we can state the theorem.

Theorem 3.7. For X a derived scheme, the loop space LX is identified with the odd tan-
gent bundle TX [−1] such that constant loop correspond to the zero section. Equivalently,
we have an equivalence of OX-algebras

OLX ∼= Ω−
•

X .

Take global section on both side and use the fact that HH∗(QCoh(X)) ∼= O(LX), we get

HH∗(QCoh(X)) ∼= Γ(X; Ω−
•

X )

.

We need to introduce one more definition before proving the theorem. For a (not
neccessarily coconnective) commutative dg k-algebras R, we can assign an affine stack
Spec(R) to it whose S points is given by the space

Spec(R)(S) := HomDGA(R, S).

For a stack X,the affinization of X is the universal affine stack Aff(X) such that

Map(X, SpecS) ∼= Map(Aff(X), SpecS)

for all algebras S. Now consider the case K which is a nice topological space, for example,
a CW complex. In the category of groupoids, we can always write K = (colimK ∗) a
colimit of points by picking a triangulation. Then we compute

O(K) = O(colim
K
∗) = lim

K
O(∗) = lim

K
k = C∗(K, k).

The key point is that taking global section from the category of stack sends colimits to
limits and the k’s glues back to C∗(K, k). So the global functions of S1 is

O(S1) = C∗(S1, k) ∼= H∗(S1, k) = k[η]/(η2)

with |η| = 1. Here we use the formality of C(S1, k) meaning this dg algebra is isomorphic
to its cohomology algebra. Note k is of characteristic 0 is needed for this fact to be true.
Then we will have the following lemma.

Lemma 3.8. The affinization of S1 is Aff(S1) ∼= Spec k[η] where deg η = 1. We denote
the latter A1[1] and call it the odd affine line.

Proof. The following two functor forms an adjunction pair,

O : DStk �: DGAop
k : Spec .

The second lemma we need is that in the case of schemes, taking loop space satisfies
Zariski codescent.

Lemma 3.9. For a scheme X, and U ↪→ X a Zariski open subscheme, the induced map
LU ↪→ LX is also Zariski open. The assignment of loops

U 7→ LU
forms a cosheaf on the Zariski site of X.

Proof. Affineness allows us to conclude LU ∼= LX ×X U by computing u∗OLX ∼= OLU
where u : U ↪→ X is the inclusion.
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4 Proof of the theorem

Proof. We can assume X = SpecR is affine by the second lemma and in this case LX ∼=
MapDSt(A1[−1], X) by the first lemma. So our goal is to show Map(A1[−1], X) ∼= TX [−1]
in a natural way.

Take any S ∈ DGA− and compute

Map(A1[−1], X)(S) = MapDSt(SpecS × A1[−1], X) = HomDGA(R, S ⊕ S[−1]).

Recall that for any S-point x : SpecS −→ X and M ∈ S − Mod−, there is a fiber
diagram.

HomS(T ∗x (X),M) HomDGA−(R, S ⊕M)

x HomDGA−(R, S)

Some connectivity estimate shows us that the following diagram is still a fiber diagram.

HomS(T ∗x (X), S[−1]) HomDGA−(R, S ⊕ S[−1])

x HomDGA−(R, S)

Then, we can shift the grading and use the adjunction for symmetric algebras to get

HomS(T ∗x (X), S[−1]) ∼= HomS(T ∗x (X)[1], S) ∼= HomDGA−S
(Sym

•
(T ∗x (X)[1]), S).

This identification is natural in the sense that if S ′ and y : SpecS ′ −→ X is another
pair of such data and there is a morphism f : SpecS −→ SpecS ′ such that x = y ◦ f ,
then f pulls back the whole diagram functorially. This implies the isomorphisms glue to
a global isomorphism Map(A1[−1], X) ∼= TX [−1].

Remark 4.1. The loop space LX → X is a group object over X and taking the Lie algebra
gives the odd tangent complex TX [−1] → X. In the case of schemes, we can think of
the isomorphism as the inverse exponential map exp−1. If X is not a scheme, these two
spaces might not be isomorphic to each other. For example, when X is the classifying
stack BG for some group G. The loop space LX is given by G/G the adjoint quotient
stack but TX [−1] = g/G. See the original paper [BD10] for more discussions on loops,
unipotent loops, and formal loops.
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