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Abstract

This is the notes for my expository talk given in the Geometric Representation
Theory seminar in SLMath in Spring 2024. The goal of this talk is to give a quick
introduction to microlocal sheaf theory and its basic tool kit. We also mention a
project of mine and a joint project with Wenyuan Li which further develop and utilize
the machinery.

1 Motivation

Beginning with the pioneer work of Nadler-Zaslov [10, 9] and Tamarkin [11], microlocal sheaf
theory has been applied to several field related to symplectic geometry. One of the recent
theorem of Ganatra, Pardon, and Shende [2] proves that certain sheaf theoretic category
in fact models the wrapped Fukaya category. Combining with the coherent-constructible
correspondence, proposed by Fang, Liu, Treumann, and Zaslow [1], and finally proven by
Kuwagaki [8], one obtains the following statement of toric mirror symmetry.

Theorem 1.1 ([2, Corollary 6.16, Example 7.25]). Let Σ be a fan in Rn. Denote by XΣ

the associated toric scheme and i : ∂XΣ ↪→ XΣ the inclusion of its toric boundary ∂XΣ :=
XΣ \ (C∗)n. Assume Σ is smooth and let WΣ : (C∗)n → C be the Hori-Vafa mirror potential.
Then there is an equivalence

Coh(∂XΣ) Coh(XΣ)

W
(
W−1

Σ (∞)
)

W
(
(C∗)n,W−1

Σ (∞)
)

i∗

between the categories and functors, where the bottom inclusion is given by the fact that
W−1

Σ (∞) ↪→ C∗ is a Liouville hyperplane.
To have a more natural statement in the microlocal sheaf theory frame work, let

ΛΣ :=
⋃
σ∈Σ

σ⊥ ×−σ ⊆ T ∗T n = T n × Rn
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the FLTZ skeleton at the infinity. We have the following equivalent expression:

IndCoh(∂XΣ) IndCoh(XΣ)

ShΛΣ
(T n) µshΛΣ

(ΛΣ)

i!

The goal of this talk is to introduce the standard toolkit in microlocal sheaf theory and,
along the way, introduce the A-side categories and functors which show up in the second
diagram.

2 Microlocal sheaf theory

2.1 Six functors

In this topological setting, we will assume our all spaces to be locally compact Hausdorff.
We also fix a rigid symmetric monoidal (idempotent complete) small stable category V0, in
the sense of [4], and we will use its Ind-completion V := Ind(V0) as our coefficient. For this
discussion, it is enough to take V0 = Perf k for some field k so V = k -Mod. Let X be a space.
We will consider the category of V-valued sheaf Sh(X;V), which we will simply denote it
as Sh(X) when it is unlikely to cause confusion. It is the full subcategory of Fun(OpopX ,V)
consisting of F such that, for any open U and any open cover {Ui} of U , the canonical map
built by the Čech nerve

F (U)→ lim

(∏
i

F (Ui)→→
∏
i,j

F (Uij)
→→→
∏
i,j,k

F (Uijk)
→→→→ · · ·

)
is an equivalence.

This assignment of X 7→ Sh(X) admits the six-functor operations. That is, for a space
X, there exists a symmetric monoidal product

(−)⊗ (−) : Sh(X)× Sh(X)→ Sh(X)

inherited from that of V . For any F ∈ Sh(X), there is an adjunction F ⊗ (−) ` Hom(F,−)
and it provides an internal Hom

Hom : Sh(X)op × Sh(X)→ Sh(X).

For a map f : X → Y , there is a ∗-adjunction, often referred as the “star”-adjunction,

f∗ : Sh(X) 
 Sh(Y ) : f ∗

and a !-adjunction, often referred as the “shriek”-adjunction,

f ! : Sh(Y ) 
 Sh(X) : f!.

As usual, when f is proper f! = f∗ and when f is smooth f ! = f ∗ ⊗ ωf where ωf := f !1N .
Other familiar properties are, for example, base change, the projection formula, etc..
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2.2 Microsupport

Now we consider manifolds. For a sheaf F ∈ Sh(M), we first want to define an invariant,
a conic closed subset SS(F ) ⊆ T ∗M , generalizing the notion of support supp(F ), which
records the co-directions of non-propagation. Naively speaking, a point (x, ξ) is not in the
microsupport SS(F ) should mean that the sections can propagate toward ξ. Thus, in a
coordinate, i fwe assume that ξ = (1, 0, · · · , 0), then this will mean that the restriction map

Γ(Rn;F )→ Γ({x < 0};F )

is an equivalence.

Remark 2.1. The actual definition of SS(F ) is more involved. Instead of checking at one
point (x, ξ), one is required to find an open set Ω 3 (x, ξ) and check all points (x′, ξ′) ∈ Ω.
Furthermore, one cannot check on just one open neighborhood of x′: Notice that there is a
fiber sequence

Γ{x≥0}(Rn;F )→ Γ(Rn;F )→ Γ({x < 0};F )

where the left term is the sections supported on Γ{x≥0}(Rn;F ) and it vanishes if and only
the right arrow is an equivalence. To have the official definition, one then needs to consider
all functions φ defined near x′ such that dφx = ξ′ and check that the stalk(

Γ{φ≥0}(F )
)
x′

= 0

vanishes for all such φ.

Example 2.2. We have SS(1(0,∞)) = T ∗0,≤R1∪ [0,∞) and SS(1[0,∞)) = T ∗0,≥R1∪ [0,∞). More
generally, for an open set j : U ⊆ M with a smooth boundary ∂U , we have SS(j!1U) =
N∗out(U) := N∗out(∂U) ∪ 0U and SS(j∗1U) = N∗in(U). For example, Γ((0, 1); 1(0,∞)) = 1 but
Γ((−1, 1); 1(0,∞)) = 0 so, at 0, the sections do not propagate toward the left and thus the
negative co-direction is in the microsupport.

3



More generally, for a closed submanifold Z ⊆M , we have SS(1Z) = N∗(Z).

The above examples all have Lagrangian microsupport. But one can also have sheaves
with strictly coisotropic microsupport

Example 2.3. We denote by C∞M the sheaf of C∞ functions. Then SS(C∞M) = T ∗M . Consider
the real line R, we have SS(⊕x≥01x) = [0,∞)× R ⊆ T ∗R. Note that this microsupport has
a non-empty boundary.

One main reason to consider microsupport is that it provides criterion for when canonical
maps are equivalences. For example, one can consider the notion of non-characteristic, which
provides the following generalization for the case when f : Y → X is smooth or the case
when F is a local system.

Proposition 2.4 ([5, Proposition 5.4.13]). Let F ∈ Sh(X) be a sheaf. If f : Y → X is non-
characteristic to SS(F ), then the canonical morphism f ∗F ⊗ ωf → f !F is an isomorphism.

To start making connection with symplectic geometry, we mention the following definition
and theorem.

Definition 2.5. A stratification S is a locally finite decomposition X = qXα by locally
closed submanifolds Xα. We always assume our stratifications to be Whitney. A sheaf
F ∈ Sh(M) is called constructible if there exists a stratification S such that F |Xα ∈ Loc(Xα).
We use ShR−c(M) to denote the subcategory consisting of constructible sheaves.

Theorem 2.6 ( [5, Theorem 6.5.4, Proposition 8.3.10]).

1. For any F ∈ Sh(M), the microsupport SS(F ) is coisotropic.

2. Assume M is Cω and SS(F ) is subanalytic. Then SS(F ) is Lagrangian if and only if
F is constructible.

Because of the above theorem, when talking about Lagrangians or Legendrians, we will
assume them to be subanalytic (so the manifold M is Cω). Fix a closed subset X ⊆ T ∗M ,
we use the notation ShX(M) to denote

ShX(M) := {F ∈ Sh(M)| SS(F ) ⊆ X}

the category consisting of sheaves microsupported in X. Similarly, when we concern only
the part of microsupport away from the zero section, we set

SS∞(F ) := (SS(F ) \ 0M)/R>0) ,
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and, for a closed subset X ⊆ S∗M , we use a similar notation

ShX(M) := {F ∈ Sh(M)| SS∞(F ) ⊆ X}

for the subcategory of sheaves microsupported (at the infinity) in X. That is, in this case,
ShX(M) = Sh(R>0X)∪0M (M). Let Λ ⊆ S∗M be a Legendrian. The last theorem implies that
ShΛ(M) consists of constructible sheaves. More detailed, one can always find a Whitney
stratification S [5, Proposition 8.3.10] such that

Λ ⊆ N∗(S) :=
⋃
α

N∗(Xα).

Proposition 2.7 ([2, Proposition 4.8]). Let S a Whitney stratification and denote by ShS(M)
the subcategory sheaves constructible with respect to S. Then we have ShS(M) = ShN∗S(M).

Corollary 2.8. For a Legendrian Λ, the category ShΛ(M) is compactly generated. More-
over, corepresentatives of stalks and microstalks, functors of the form F 7→ µ(x,ξ)(F ) :=(
Γ{φ≥0}(F )

)
x

in the sense of Remark 2.1, form a generating set.

Example 2.9. Consider the case when M = S1 and Λ = T ∗0,<S
1 = {(0,−1)}. The data to

decide a sheaf F ∈ ShΛ(S1) consists of the stalk A and a possibly non-invertible endomor-
phism α : A→ A when restricting to the to the right. For example, denote by π : R1 → S1

the projection, then π!1(0,∞) is such a sheaf. For such a sheaf F , up to a shift [5, Proposition
7.5.3], µ(x,ξ)(F ) = fib(α : A → A) so F is a local system if µ(x,ξ)(F ) = 0. Clearly, F = 0 if
and only if A = 0.

2.3 Microsheaves

Up until now, we’ve mostly working on the base manifold and use SS(F ) as an auxiliary tool.
The following construction will allow us to work directly on the cotangent bundle T ∗M .

Definition 2.10. We define the conic sheaf µshT ∗M to be the sheafification of the presheaf

µshpre
T ∗M : OpopT ∗M → st

Ω 7→ Sh(M)/ ShT ∗M\Ω(M).

Here, we use st to denote the category of stable categories. Denote by p : Ṫ ∗M → S∗M
the projection to the cosphere bundle. Because µshT ∗M is conic, on Ṫ ∗M , it is a pullback
µshS∗M from S∗M or µshT ∗M |Ṫ ∗M = p∗ µshS∗M . We refer the objects of either µshT ∗M(Ω) or
µshS∗M(Ω) as microsheaves on Ω. When the context is clear, one often surpass the notation
and simply write µsh for either case.

For F ∈ µshpre(Ω), there is a notion of SSΩ(F ) := SS(F̃ ) ∩ Ω for any representative F̃ .
This follows from the triangle inequality of microsupport: If F → G→ H is a fiber sequence,
then

((SS(F ) \ SS(H)) ∪ (SS(H) \ SS(F ))) ⊆ SS(G) ⊆ (SS(F ) ∪ SS(H)) .

The notion further descends to µsh since µsh(x,ξ) = colim
Ω3(x,ξ)

µshpre(Ω) is computed by germs.

(This depends on the subtle fact that the coefficient is st.)
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Definition 2.11. For a closed subset X of S∗M or a conic closed subset of T ∗M , we
use the notation µshT ∗M ;X or, when the context is clear, µshX to denote the subsheaf of
µshS∗M / µshT ∗M consisting of objects microsupported in X (at the infinity).

Lemma 2.12. For a Legendrian Λ ⊆ S∗M and an open Ω ⊆ S∗M , the category µshΛ(Ω) is
compactly generated. In fact, in generic posistion, for Ω small enough, µshΛ(Ω) is a quotient

µshΛ(Ω) = µshpre
Λ (Ω) := ShΛ(B)/ ShΛ\Ω(B)

where B is the image of Ω under S∗M →M .

Example 2.13. Consider an open ball B in R2 and let Λ be its outward conormal at the
infinity N∗out,∞(B), which has a homotopy type of an S1. The category µshΛ(Λ) is then in
fact the same as Loc(S1). This is because locally near the front projection ∂B, a microsheaf
can be represented by some constant sheaf with stalk A supported on an open half-plane
but there can be monodromy when goin around the circle.

Because µshT ∗M ;Λ is a sheaf, the inclusion q : Ṫ ∗M ⊆ T ∗M induces a canonical restriction
map

q∗ : ShΛ(M)→ µshΛ(Λ),

often referred as the microlocalization functor, and we can see from the last example is
neither fully-faithful nor surjective.

Example 2.14. This is the A-side functor corresponding to i! : IndCoh(XΣ)→ IndCoh(∂XΣ)
when setting M = T n and Λ = ΛΣ the FLTZ skeleton.

A main property of q∗ : ShΛ(M)→ µshΛ(Λ) is that it preserves both limits and colimits
and thus admits both adjoints q! a q∗ a q∗. This fits it into the framework of spherical
adjunctions.

Definition 2.15. Let F : A � B : FL be an adjunction. We use the notation T and S to
denote the functors which fit in the fiber sequences

T → idB → FFL, FLF → idA → S

and call them the twist and cotwist. The adjunction is called spherical if both T and S are
equivalences.
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2.4 Wrappings

We will give a description of the cotwist of q∗ in terms of isotopies, or sometimes referred as
wrappings, of sheaves. That is, for an isotopy ϕt : S∗M → S∗M for t ∈ I, we would like to
construct, for a sheaf F ∈ Sh(M), a family Ft ∈ Sh(M) such that SS∞(Ft) = ϕt (SS∞(F )).
This is provided by the following theorem:

Theorem 2.16 ([3, Proposition 3.2, Theorem 3.7]). Let M be a manifold. For a contact
isotopy Φ : S∗M × I → S∗M , there exists a unique sheaf kernel K(Φ) ∈ Sh(M ×M × I)
such that

1. K(Φ)|t=0 = 1∆M
, and

2. SS∞(K(Φ)) ⊆ ΛΦ where ΛΦ = {(x,−ξ, ϕt(x, ξ), t,−α(ϕ̇t))} is the contact movie of Φ.

Moreover, this quantization is compatible with composition, i.e.,

1. K(Ψ ◦ Φ) = K(Ψ) ◦ |IK(Φ),

2. K(Φ−1) ◦ |IK(Φ) = K(Φ) ◦ |IK(Φ−1) = 1∆M×I .

Here Φ−1 is the isotopy given by Φ−1(−, t) := ϕ−1
t .

With the above we theorem, we obtain the family by setting Ft := (K(Φ) ◦ F ) |t =
K(Φ)|t ◦ F . In fact, considering the total sheaf K(Φ) ◦ F ∈ Sh(M × I) provides some more
structure for us.

Example 2.17. The simplest example of wrapping is given by the isotopy Φ : T ∗J×I → T ∗J
where J = R1 or S1 by the formula

ϕt(x, ξ) =

{
(x+ t, ξ), ξ > 0,

(x− t, ξ), ξ < 0.

This is the case where the term “wrapping” comes from. For the R1 case, when t > 0,
the GKS sheaf quantization is simply 1{(x,y)||x−y|<t}[1] and when t ≤ 0, it is given by
1{(x,y)||x−y|≤−t}. The S1 are given by a suitable projection of them.

Definition 2.18. We say a contact isotopy Φ : S∗M × I → S∗M is positive if α(ϕ̇t) ≥ 0.

For such an isotopy, we see from the description of the contact movie Λ that SS (K(Φ)) ⊆
{τ ≤ 0}, i.e., K(Φ) ∈ Sh{τ≤0}(M ×M × I). For any manifold N , a sheaf G ∈ Sh{τ≤0}(N × I)
admits continuation maps, they are a family of maps

cs,t : G|s → G|t
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for any s ≤ t and they composes naturally, for example, cr,t ◦ cs,t = cs,r. Thus, for a positive
isotopy Φ and a sheaf F , we have continuation maps F → Ft for t ≥ 0. To simplify the
notation when varying the isotopies, we also use the notation Fϕ := K(Φ)|1 ◦ F for a given
isotopy.

Proposition 2.19 ([6, Theorem 1.2]). Let X ⊆ S∗M be a closed subset. The left adjoint ι∗

of the inclusion ι∗ : ShX(M) ↪→ Sh(M) admits the description

W+
X(F ) := colim

Φ:Xc
Fϕ

where we runs through positive contact isotopy Φ which are compactly supported away from
X. There is a similar description of the right adjoint by negative wrapping.

Example 2.20. Let M = R1 and Λ = (0,−1). The sheaf 1{0} ∈ Sh(R1) satisfies SS(1{0}) ∩
{ξ < 0} ⊆ Λ but not the positive codirection. According to the above theorem, it ι∗(1{0})
can thus be computed using Example 2.17 with only wrapping on the positive end, which
implies that

ι∗(1{0}) = colimt→∞ 1(0,t)[1] = 1(0,∞)[1].

Proposition 2.21 ([7, Remark 4.4, Definition 4.5]). Fix a small positive contact isotopy ϕt
such that Λ ∩ ϕt(Λ) = ∅ for 0 < t < ε. Then we have S+

Λ (F ) = W+
Λ(Fϕ).

One thing this description provides is, in good cases, a description of the Serre functor on
the subcategory of sheaves with perfect stalks and compact support ShΛ(M)b0 ⊆ ShΛ(M)c.

Corollary 2.22 ([7, Proposition 5.28]). For a swappable Λ ⊆ S∗M [7, Proposition 5.19],
the Serre functor Sr, the unique functor such that,

Hom(G,F )∨ = Hom(F,Sr(G))

on ShΛ(M)b0 is given by Sr(F ) = S−Λ (F ⊗ ωM).

Assume the manifold M is compact. Then we have ShΛ(M)b ⊆ ShΛ(M)c, i.e., sheaves
with perfect stalks are compact. The (classical) Verdier duality

DM : Sh(M)→ Sh(M)op

F 7→ Hom(F, ωM)

restricts to an equivalence DM : ShΛ(M)b,op
∼−→ Sh−Λ(M)b. On the other hand, there is a

Fourier-Mukai theorem

Sh−Λ×Σ(M ×N)
∼−→ FunL(ShΛ(M), ShΣ(N))

F 7→ K ◦ F

and it follows from a canonical duality DΛ : Sh−Λ(M)c
∼−→ ShΛ(M)c,op.
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Proposition 2.23 ([7, Proposition 7.19]). For F ∈ Sh−Λ(M)b,

DΛ(F ) =
(
S+

Λ (DM(F ))
)
⊗ ω−1

M .

Remark 2.24. One sees easily that when S+
Λ is invertible, the equivalence DM : ShΛ(M)b,op

∼−→
Sh−Λ(M)b extends to the whole Sh−Λ(M)c

∼−→ ShΛ(M)c,op. In fact, the converse in some
precise but somewhat complicated sense is also true. See [7, Theorem 7.22].
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